SIMPLIFIED METHOD OF CALORIMETRIC MEASUREMENTS OF BACKGROUND LOSS IN CRYSTALS
https://doi.org/10.21122/2220-9506-2012-0-2-85-92
Abstract
We report on the measurements of absorption coefficient of the synthetic diamond crystal using an adapted form of laser calorimetry technique at wavelengths of 1064, 640, 532, 452 and 364 nm. The absorption coefficient was found to increase exponentially from 0,03 cm-1 at 1064 nm to 0,7 cm-1 at 364 nm.
About the Authors
V. G. SavitskiUnited Kingdom
A. Kemp
United Kingdom
References
1. Savitski, V.G. Characterization of Single-Crystal Synthetic Diamond for Multi-Watt ContinuousWave Raman Lasers / V.G. Savitski, I. Friel, J.E. Hastie [et al.] // IEEE Journal of Quantum Electronics. – 2012. – Vol. 48. – P. 328–337.
2. Lubeigt, W. Continuous-wave diamond Raman laser," W. Lubeigt, G.M. Bonner, J.E. Hastie [et al.] // Optics Letters. – 2010. – Vol. 35. – P. 2994– 2996.
3. Friel, I. Development of high quality single crystal diamond for novel laser applications / I. Friel [et al.] // Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII, Toulouse, France, 2010.
4. Turri, G. Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapordeposited diamond at 1.064 μm / G. Turri [et al.] // Optical Engineering. – 2007. – Vol. 46. – Р. 064002.
5. Loon, F. van Intracavity diamond heatspreaders in lasers: the effects of birefringence / F. van Loon, A.J. Kemp, A.J. Maclean [et al.] // Optics Express. – 2006. – Vol. 14. – P. 9250–9260.
6. Caird, J.A. Quantum Electronic-Properties of the Na3Ga2Li3F12:Cr3+ Laser / J.A. Caird, S.A. Payne, P.R. Staver [et al.] // IEEE Journal of Quantum Electronics. – 1988. – Vol. 24. – P. 1077–1099.
7. Lubeigt, W. 1.6W continuous-wave Raman laser using low-loss synthetic diamond / W. Lubeigt, V.G. Savitski, G.M. Bonner [et al.] // Optics Express. – 2011. – Vol. 19. – P. 6938–6944.
Review
For citations:
Savitski V.G., Kemp A. SIMPLIFIED METHOD OF CALORIMETRIC MEASUREMENTS OF BACKGROUND LOSS IN CRYSTALS. Devices and Methods of Measurements. 2012;(2):76-78. https://doi.org/10.21122/2220-9506-2012-0-2-85-92