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Abstract 
The paper presents a new view of vector physical quantities as multicomponent quantities. Each of the 

components of the mentioned multicomponent quantities can carry important and even unique information 
about the sources and causes of their occurrence. Looking at the vector quantity as the multicomponent quan-
tity led to the need to form the corresponding conception. There are three positions of this conception in this 
paper, which are formulated as follows: vector multicomponent physical quantities are considered as func-
tions of the set of their constituent information components; the communication functions of the specified 
information components in the models of multicomponent physical quantities are determined by the laws of 
vector algebra; information models of vector multicomponent physical quantities allow an alternative repre-
sentation of information components depending on the selected coordinate system. 

The mathematical model of the vector multicomponent physical quantity is presented. This model is 
fundamental and directly follows from the positions of the conception formulated above. This model can be 
applied to describe multicomponent displacements and deformations that both simple and complex objects 
undergo. An example of the complex object can be the manipulator of the universal industrial robot. The 
space for modeling multicomponent displacements of simple objects was shown in the paper. Information 
models of vector multicomponent physical quantities allow one to alternatively represent informative compo-
nents. And the task of constructing such models is complex and ambiguous. Therefore, the formal apparatus 
for the synthesis of such models, which is based on certain rules and conventions, was proposed in the paper. 
The theoretical foundations of the method of optical measurements of informative components of multicom-
ponent displacements and deformations of simple objects, which involves the use of multidimensional test 
objects, are presented.

Keywords: conception, vector multicomponent quantities, multicomponent displacement, models of  
multicomponent displacement and deformation, method of measurement. 
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Представлен новый взгляд на векторную физическую величину как на величину 
многокомпонентную. Каждая из компонентов упомянутых многокомпонентных величин может 
нести важную и даже уникальную информацию об источниках и причинах их возникновения. 
Рассмотрение векторной величины как величины многокомпонентной привело к необходимости 
формирования соответствующей концепции. Представлены три положения концепции, которые 
заключаются в следующем: векторные многокомпонентные физические величины рассматриваются 
как функции множества составляющих их информативных компонентов; функции связи названных 
информативных компонентов в моделях многокомпонентных физических величин определяются 
законами векторной алгебры; информационные модели векторных многокомпонентных физических 
величин допускают альтернативное представление информативных составляющих в зависимости  
от выбранной системы координат.

Представлена математическая модель векторной многокомпонентной физической величины. 
Данная модель является основополагающей и непосредственно вытекает из сформулированных 
выше положений концепции. Модель может быть применена при описании многокомпонентных 
перемещений и деформаций, которые претерпевают и простые, и сложные объекты. Примером 
сложного объекта может быть модель манипулятора универсального промышленного робота.  
Показано пространство моделирования многокомпонентных перемещений простых объектов. 
Информационные модели векторных многокомпонентных физических величин позволяют 
альтернативно представлять информативные составляющие, а задача построения таких моделей 
сложна и не однозначна. Поэтому в статье предложен формальный аппарат синтеза таких моделей, 
который основан на определённых правилах и соглашениях. Представлены теоретические основы 
метода оптических измерений информативных составляющих многокомпонентных перемещений 
и деформаций простых объектов, который предполагает использование многомерных тестовых 
объектов. 

Ключевые слова: концепция, векторные многокомпонентные величины, многокомпонентное  
перемещение, модели многокомпонентных перемещений и деформаций, метод измерения.
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Introduction

The terms “quantity”, “physical quantity”, 
“measured physical quantity” are key in the theory 
of measurements. The term of a physical quantity in-
tegrates in self the concepts of a kind, size, measure-
ment unit and value, which make it possible to fill 
the initial a priori uncertainty in a particular area of 
knowledge with physical meaning and quantitative 
content [1]. In this case, the qualitative definiteness of 
the quantity, which is formulated in the standard [1], 
is based on the concept of dimension. Physical quan-
tities, for example, the length and diameter, which 
have the same measurement unit, are recognized as 
homogeneous. The same standard introduces the 
concept of a derived quantity as a quantity included 
in a system of quantities and determined through the 
basic quantities of this system, each of which has its 
own dimension. For example, velocity is a derivative 
of two quantities that are distance and time. Force 
is a derivative of mass and acceleration, the latter 
of which is also a derivative quantity. Obviously, 
the emergence and development of these terms are 
a natural result of the complication of objects and 
phenomena that fall within the sphere of human vital 
interests. Therefore, keeping in mind the dialectics 
of cognition, one should expect further development 
in the affected subject area. Indeed, if we consider a 
physical quantity as a property of a material object 
or phenomenon, the question arises about the sources 
of this property, sources that lead to a change in this 
quantity, but have different reasons and, possibly, a 
different nature. In this case, the resulting values of 
quantities integrate the informative components from 
the action of different sources. Thus, we are talking 
about a system of homogeneous quantities, which 
have the same or significantly overlapping spectral 
range and show their effect in the resulting quantity, 
which is essentially multicomponent. Informative 
components of such multicomponent quantities are 
of interest and therefore must be determined.

Such view of a physical quantity takes it be-
yond the terminology prescribed by the standard [1]. 
Based on the needs of practice, we come to the need 
for new formulations, new models and new methods 
for measuring such multicomponent quantities. 

A comprehensive analysis of the problem and 
an excursion into a number of technical applications 
led to the concept of vector multicomponent physical 
quantities [2, 3], which, for example, finds applica-
tion in the problems of determining the informative 

components of complex multicomponent displace-
ments and deformations of objects of varying de-
grees of complexity.

The conception of the vector 
multicomponent physical quantity

The first ideas that formed the basis of the con-
ception originated in the process of analyzing the 
test results of aircraft gas turbine engines. Engines 
elements under various operating conditions under-
go complex displacements and deformations. At the 
same time, the sources of these displacements and 
deformations often have a different nature and sig-
nificance, and in the aggregate they are reflected in 
the resulting technical and economic indicators.

The presence of such sources is explained by 
the structural complexity and energy saturation of 
gas turbine engines. Any gas turbine engine is a mo-
bile system, which is affected by transient processes 
when changing modes of its operation, vibration, 
structural defects of components and assemblies, and 
much more. The factors influencing the condition of 
the engines are temperature and revolutions changes, 
unsteady heat transfer, clearances in the blade locks, 
rotors precession, pressure drops and much more. 
Revealing the contribution of each source to the re-
sulting displacements of constructional elements at 
the appropriate time and at selected points is of fun-
damental importance for assessing and identifying 
design errors, and developing promising technical 
solutions.

Thus, the resulting vector quantity, in this case 
displacement, is essentially multicomponent, each 
component of which carries information about the 
sources and reasons for their appearance and change.

The view of the vector quantity as the multicom-
ponent quantity, which in an integral form reflects 
the variety of processes that lead to complex dis-
placements and deformations of both complex and 
simple objects, led to the realization of the need to 
form the appropriate conception.

In papers [2, 3] the following definition of the 
conception is given: if the controlled objects and 
the processes associated with them have a complex  
character and (or) structure, then the movements 
that are their consequence are themselves characte-
rized by a certain structure, the elements of which are  
interconnected in some way, are in interaction, have 
a mutual influence on each other and carry addi- 
tional information about the process or object. 
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The conception of vector multicomponent  
physical quantities is based on the following three 
positions [2–4]:

– Vector multicomponent physical quantities 
are considered as functions of the set of their con-
stituent informative components;

– The above-mentioned informative compo-
nent’s communication functions in models of multi-
component physical quantities are determined by the 
laws of vector algebra;

– Information models of vector multicomponent 
physical quantities allow alternatives representation 
of informative components, depending on the selec-
ted coordinate system.

Then the mathematical model of a vector mul-
ticomponent physical quantity, which includes in-
formative components of the same dimension and 
reflects complex processes occurring with the object, 
is represented in the expansion along the axes of the 
Cartesian coordinate system in the following form:

where                                                are the projections 
of multicomponent displacements on the coor-
dinate axes of the Cartesian coordinate system;  

                              are projections of informative
components onto the k-th coordinate axis 
of multicomponent displacement X; r, τ are spatial 
and temporal coordinates; F is communication func-
tion, which are determined by the physics of the in-
vestigated object or process.

This model follows from the provisions of the 
conception formulated above directly and is funda-
mental.

The model (1) can be concretized with the pre-
sentation of the resulting value as a vector sum of 
the corresponding informative components in accor-
dance with the second position of the conception:

where                                                                      are

vector sums of p informative components of the  
coordinate components of the quantity X.

The third position of the concept is due to the 
relativity of movement. Informative components 
in models (1) and (2) can be expressed in different 
ways depending on the position of the base coordi-
nate system and the selected point of the controlled 
object. However, this does not affect the reliabi-
lity and reproducibility of informative components 
in models when moving from one basic coordinate 
system to another. The transition from one model to 
another is carried out by an unambiguous recalcula-
tion using the corresponding homogeneous transition 
matrix [5].

The ambiguity and multivariance of the models 
are due to another significant circumstance.

Analysis of practical problems, which differ in 
the complexity of objects and their trajectories in 
real space, made it possible to structure the mode-
ling area:

– Models of complex multicomponent displace-
ments that simple objects undergo;

– Models of multicomponent simple displace-
ments that complex objects undergo;

– Models of multicomponent complex displace-
ments that complex objects undergo.

Another example of the complex object that 
undergoes complex multicomponent movements is 
the manipulator of the universal industrial robot. So-
lutions of direct and inverse kinematic tasks of the 
robot manipulator using matrices of rotation and dis-
placement of the links allows one to select the infor-
mative components of resulting displacements of the 
flange of the last link of the manipulator [5]. 

Obviously, multicomponent displacements in 
models (1) and (2) describe the displacement of a 
point of an object, which can belong to both a com-
plex and a simple object. Therefore, these models are 
applicable in all these cases.

Before proceeding to the solution of the follo-
wing problems, it is necessary to clarify the termi-
nology. Many papers use the notion of multidimen-
sional displacement, which reflects the movement of 
objects in three-dimensional space [6]. This term is 
not equivalent or identical to the term of multicom-
ponent movement, which is discussed in this article. 
Multicomponent displacements, which correspond 
to the positions of the formulated concept, can be 
one-dimensional and multidimensional.
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The space for modeling multicomponent dis-
placements of simple objects can be represented in 
the following view (Figure 1).

Figure 1 – Classification of mathematical models of 
multi-component displacements of mobile objects

Thus, even for simple objects, the modeling 
space provides significant scope for creativity. In 
addition, information models of vector multicom-
ponent physical quantities allow one to alternatively 
represent informative components. This is directly 
noted in the third position of the conception. That 
is, the task of building such models is complex and 
ambiguous. Therefore, a formal apparatus for the 
synthesis of such models is needed, which is based 
on certain rules and agreements.

Formal synthesis of models of multicomponent 
displacements of moving objects

Let us take as a basis the model in the form 
of the system of equations (2) and pass to the sca-
lar form. To do this, we introduce the coefficients

                                           which are determined

by the following agreements:

where i is serial number of the models; 
determines the dimension of the models; j is serial 
number of informative components. 

Then model (2) will be written in the following 
form:

Model (5) is a combination of one-dimensio-
nal models, in which the informative components  
xijx (r, τ), xijy (r, τ), xijz (r, τ) are projections of the in-
formative components of the vector quantity Xi on 
the axes of the Cartesian coordinate system, and the 
direction of these projections along the correspond-
ing axes determined by the signs that are established 
by agreement (4).

Model (5) can be written in the generalized 
form:

The combination of variants from (6) makes it 
possible to build models in one-dimensional, two-di-
mensional and three-dimensional spaces, which cor-
responds to the classification presented in Figure 1.

In accordance with the original formula-
tion of the problem the informational components 
                                      are of interest.

The task of defining informative components can 
be illustrated by the following structure (Figure 2):  

Figure 2 – Illustration of the task of determining informa-
tive components for a one-dimensional model of a multi-
component quantity

Here Fi (...) is the function of communication 
of informative components: xi1 (r, τ),…, xip (r, τ) in 
a multicomponent physical quantity Xi (r, τ), which 
can be described by model (6); Fi

–1(...) is the inverse 
function, which should provide the transition from   
Xi (r, τ) to xi1 (r, τ),…, xip (r, τ).

The problem is that a single-channel (one-di-
mensional) structure built on the basis of model (2) 
does not allow the transition from Xi (r, τ) to Xi (r, τ), 
which is due to the incorrectness of such a task. The 
way out of this situation is to combination the mo-
dels. The generalized structure of the system that 
implements the combination of one-dimensional 
models is shown in Figure 3.
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This structure illustrates information redun-
dancy, which can be realized, for example, by 
several measurement channels and, accordingly, 
by composing a system of equations that can be 
solved with respect to each of the informative com-
ponents.

Plane models of multicomponent 
displacements of moving objects

Each of the equations included in systems (1), 
(2) or (5) is obtained by projecting the simulated 
multicomponent quantity onto the corresponding 
coordinate axis of the Cartesian coordinate system. 
That is, each of the projections is a model of the mul-
ticomponent displacement of the object point in the 
projection onto a one-dimensional space. The transi-
tion from three-dimensional models of multicompo-
nent displacements to flat models allows the latter 
to be combined with images on the plane of video 
cameras. This is important question for the develop-
ment of the method for measuring these informative 
components. 

If we take into account the zoom coefficient of 
the optical system, then in accordance with (2) we 
can write:

where Yx(r, τ), Yy(r, τ) are images of multicompo-
nent displacements of some point of the object in the 
coordinate system of the video camera; σ is zoom 
coefficient of the optical system.

For convenience, let’s move on to the scalar 
form of the model. To do this, we use the agreements 
(3) and (4):

The presence of combination coefficients: η i,  j, k , 
ς i,  j, k makes it possible to automatically build models 
that will reflect different processes and phenomena 
in the object. Models (7) can be used in technical 
vision systems to determine the informative com-
ponents of displacements of points of an object in 
three-dimensional space. However, restoring the real 
coordinates of points of moving objects in three-
dimensional space from their images on a plane 
is incorrect task [5]. This problem can be solved 
using binocular vision. But we will consider another  
method, which had called the “method of multidi-
mensional test objects”.

A method based on the use  
of multidimensional test objects

The problem of reconstructing the informative 
components of complex multicomponent displace-
ments of objects points in three-dimensional space 
from their flat images is complicated additionally 
by the fact that the known, including optical, mea-
surement methods are not selective to the mentioned 
informative components. For this reason the pur-
pose of the method is to solve the illposed problem 
of reconstructing the real values of the informative  
components of the displacements of moving  

Figure 3 – Structure based on the combination of one-dimensional models that implements information redundancy
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objects in three-dimensional space from their flat 
images with no selectivity of the known measure-
ment methods and instruments to these compo-
nents.

Almost all known methods of improving the 
quality of measuring systems, except for conserva-
tive ones, are based on the use of information redun-
dancy of system [7–9]. Here it is proposed to use 
multidimensional test objects with a priori known 
parameters at the input of the optical measuring sys-
tem to ensure information redundancy.

Since we are talking about restoring the compo-
nents of multicomponent displacements of objects 
in three-dimensional space, which are vector quan-
tities, then the parameters of multidimensional test 
objects that should be included in the model also 
must be vectored quantities. The type and number 
of multidimensional test objects parameters are de-
termined by the multidimensionality of controlled 
displacements and are functionally linked to them in 
the models of multicomponent displacements: 

where L1k , ... , Lqk  are the parameters of the k-th co-
ordinate component Lk of the multivariate test L; q 
is the number of components of the k-th coordinate 
component Lk of the multivariate test L.

So, the principal feature of the model (8) is the 
introduction into it as known informative compo-
nents of the test objects parameters L1k , ... , Lqk that 
are set in vector form.

Figure 4 shows the two-dimensional test object 
that is obtained by combining two one-dimensional 
ones.

The test object ABCD is located in plane O0X0Y0 
and has the following known parameters:
AOi = nLABx and BOi = (1– n)LABx , (n = 0.5);
COi = nLCDy and DOi = (1– n)LCDy , (n = 0.5);

EB = (1–n)LABx and FD = (1– n)LCDy , (n = 0.75).

These parameters in the models (8) are used in 
vector form, for example:
AOi = nLABx = nLABx ∙ i, (n = 0.5); 
BOi = (1– n)LABx = (1– n)LABx ∙ i, (n = 0.5);
СOi = nLCDy = nLCDy ∙ j, (n = 0.5); 
DOi = (1– n)LCDy = (1– n)LCDy ∙ j, (n = 0.5);

EB = (1– n)LABx = (1– n)LABx ∙ i, (n = 0.75);
FD = (1– n)LCDy = (1– n)LCDy ∙ j, (n = 0.75),

where i and j are the basis vectors whose direction coin-
cides with the direction of the axes O0X0 and O0Y0.

Figure 4 – Two-dimensional test object in the form of the 
cross

The task of classifying or displaying the variety 
of test objects is not posed in this article. Here, only 
the fundamental requirements imposed on them are 
formulated.

The general methodology for the formation 
of multidimensional tests and the functions of the 
connection of their components with multicompo-
nent quantities in the models are determined by 
the main provisions of the concept of vector multi-
component physical quantities and are formulated 
as follows:

– Multidimensional multicomponent tests are 
considered as functions of the set of their constituent 
components;

– The above-mentioned test component’s 
communication functions in the multicomponent 
test models are determined by the laws of vector  
algebra;

– Models of vector multidimensional multi-
component tests allow an alternative representation 
of test components depending on the problem being 
solved.

Based on the above provisions on the multidi-
mensional test object, let us determine the form of 
the connection function F of informative compo-
nents x1k (r, τ), ..., xpk (r, τ) and components L1k  , ...,   
Lqk of the k-th coordinate component Lk of the mul-
tidimensional test L in model (8):
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where i is the serial number of the communication 
function;                    is set of coordinate components; 
u is the serial number of the components of the mul-
ticomponent test Liuk  ; j is the serial number of the 
informative components of the k-th coordinate com-
ponent of the multicomponent displacement Xk (r, τ);
                 are the weight coefficients that reflect the 
absence – 0 – or the presence of – (0, 1] – of the cor-
responding component of the multicomponent test 
Liuk in the model (8);                are the weight coef-
ficients that reflect the absence – 0 – or the presence 
of – (0, 1] – of the corresponding informative com-
ponent xijk (r, τ) in the model (8).

This representation of the model (8) pro-
vides a mechanism for its adaptation to specific 
practical problems by varying the coefficients: 

              in the field of their definition.
Models (9), by analogy with (6), can be repre-

sented in scalar form. In order to do this, additional 
conventions should be introduced, which we will 
return to directly when describing the measurement 
method.

Thus, we have constructed models of vector 
multicomponent displacements in vector form and 
when certain conventions are met in scalar form. 
We understand the need for redundancy of the in-
formation entering the system to ensure the pos-
sibility of measuring the information components 
sewn in these models. And we propose the method 
for organizing information redundancy, which is 
based on the use of multidimensional test objects. 
Multidimensional test objects are rigidly connected 
to a moving object and move with it. So, the infor-
mation redundancy is a necessary condition. Let’s 
move on to the method.

Necessary and sufficient conditions  
for the physical realization of the optical 
measurement method based on the use  
of multidimensional test objects

1. The ability to form a system of n equations 
that are asymmetric with respect to informative 
components x1k (r, τ), ..., xpk (r, τ) (                  is the 
set of coordinate components) of displacements  

of the corresponding points of the test object 
image:

where Y1(r, τ), ..., Yn (r, τ) are functions of dis-
placement of the corresponding points of the image 
of the object being monitored relative to the se-
lected on the image of the points of reference; 

                      are vector 
functions of the set of informative components 
x1k (r, τ), ..., xpk (r, τ) and components L1k , ..., Lqk (r, τ) 
of the coordinate component Lk of a multidi- 
mensional test object (of the multidimensional 
test) L.

2. Realizability of special measuring and com-
puting algorithms:

whose existence condition, with continuity and dif-
ferentiability Y1(r, τ), ..., Yn (r, τ) in the whole range 
of measurement, is that the Jacobian does not be-
come zero:

The condition (13) is ensured by the implementa-
tion of the “asymmetry” of the values Y1(r, τ), ..., Yn (r, τ) 
relative to their constituent components x1k (r, τ), ..., 
xpk (r, τ) and L1k , ..., Lqk (r, τ), which is expressed by 
the inequality (11).

Obviously, when using a single-channel optical 
system, the functions ψ1, ..., ψn are the identical. If 
we use the transmission coefficient σ of the optical 
converter, then the system of equations (10) can be 
rewritten as follows:
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If we use the formal mechanism of synthesis of 
models and the agreements (3) and (4), which were 
discussed earlier, we can proceed to the scalar form 
of the system of equations (14):

where Y1(τ), ..., Yn(τ) are distances from the starting 
points (marks) which had selected on the sensitive 
plane of the image receiver to the i-th points of the 
image of the controlled object; σ is optical transducer 
transmission coefficient; the coefficients γi take on 
values according to the following agreement:

where i corresponds to the serial number of the equa-
tion.

Since                    the system of equations (15) 
can be written in the following form:

The agreement (16) is preserved for the sys-
tem of equations (17). And condition (13) for the 
existence of the corresponding measuring and 
computational algorithms that follow from the so-
lution from the system of equations (17) will look 
as follows:

Having solved the system of equations (18) 
with respect to x1k(τ), ..., xpk (τ), we obtain the cor-
responding measuring and computational algo-
rithms:

The appearance of the “-” sign in front of the 
value of the corresponding displacement component 
indicates a direction that is opposite to the direction 
of the corresponding coordinate axis.

Conclusion

The concept of vector multicomponent physical 
quantities and the method of multidimensional test 
objects in optical measurements, which are presented 
in this paper, are the theoretical basis for construc-
ting measuring systems for determining the informa-
tive components of complex multicomponent dis-
placements and deformations of moving objects. The 
possibility of solving the incorrect problem of resto- 
ring the real coordinates of a moving object from a 
sequence of its flat images is an additional advantage 
of the method. Some particular implementations of 
the presented method are shown in [10, 11]. There 
are other patented examples, but they do not exhaust 
all the possibilities of the theory presented here, 
which, regardless of the presence of certain patents, 
has independent significance.

The areas of practical applications of the presen-
ted concept and the method of optical measurements 
of multicomponent displacements and deformations 
are apparently beyond the limits of the author’s 
imagination. If we consider complex mechanical 
systems, then the optical measurement method can 
be used to determine the components of complex dis-
placements and deformations of structural elements 
in the process of finetuning and testing gas turbine 
engines. As noted in the abstract, the informative 
components of displacements and deformations are 
displacements and deformations of the links of ma-
nipulators of universal industrial robots. At the same 
time, it is known that a universal industrial robot 
becomes technologically complete equipment after 
performing a calibration operation, which requires 
highprecision measurement of displacements and 
orientations of the manipulator flange in the wor-
king area. The most important practical advantage of 
the considered measurement method is the optimiza-
tion of the amount of additional information at the 
input of the optical system. This makes it possible 
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to obtain fast information processing algorithms in 
vision systems designed to work as part of real-time 
control systems.

Despite the quite strict and fairly consistent pre-
sentation, all even theoretical issues have not been 
exhausted in the work. For example, it has already 
been written about this, it is necessary to separately 
consider the problem of generating multidimensional 
tests, to investigate the effects of their type, number 
and optimization of tests components on the quality 
of the measuring system both in the general theoreti-
cal aspect and to solve specific application problems. 
Therefore, a number of such questions have yet to be 
considered and built into the body of the presented 
theory.
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