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Abstract

Any object can have many implementations in the form of digital images and any digital image can be
processed many times increasing or decreasing accuracy and reliability. Digital colorimetry faces the need to
work out issues of ensuring accuracy, metrological traceability and reliability. The purpose of this work was
to generalize approaches to the description of multidimensional quantized spaces and show the possibilities
of their adaptation to digital colorimetry. This approach will minimize the private and global risks in mea-
surements.

For color identification digital colorimetry uses standard color models and spaces. Most of them are
empirical and are improved during the transition from standard to real observation conditions taking into
account the phenomena of vision and the age of observers. From the point of view of measurement, a digital
image can be represented by a combinatorial model of an information and measurement channel with the
appearance of the phenomenon of a color covariance hypercube requiring a significant amount of memory
for data storage and processing. The transition from the covariance hypercube to high-dimensional matrices
and tensors of the first, second and higher ranks provides the prospect of optimizing the color parameters of
a digital image by the criterion of information entropy.

Tensor calculus provides opportunities for expanding the dynamic range in color measurements descri-
bing multidimensional vector fields and quantized spaces with indexing tensors and decomposing them into
matrices of low orders.

The proposed complex approach based on tensor calculus. According to this approach the color space is
a set of directed vector fields undergoing sampling, quantization and coding operations. Also it is a dynamic
open system exchanging information with the environment at a given level and to identify color with speci-
fied levels of accuracy, reliability, uncertainty and entropy.
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TeHn3opHoe HcYHC/IeHUE B HM(PPOBOU KOJIOPUMETPHH

E.H. CaBkoBa, M.A. I'ynauna

benopycckuil nayuonanshulil mexuudeckul ynugeepcumen,
np-m Hezasucumocmu, 65, . Munck 220013, Berapyco

Hocmynuna 10.05.2022
Hpunama k nevamu 17.08.2022

[Tockonbky 000K 00BEKT MOKET UMETh MHOXKECTBO peajHu3aluii B BUAE HUPPOBBIX M300paKeHHH,
a ro0oe nugpoBoe M300paKeHNE MOYKET OBITh MHOXKECTBO pa3 IMOJBEPrHYTO 00pabOTKe, MOBBIMIAIOLICH
WY TTIOHMKAIOLIeH TOYHOCTD M JIOCTOBEPHOCTb, HIU(PPOBast KOJOPUMETPHS CTATKUBAETCS C HEOOXOJUMOCTBIO
MpopabOTKH BOTIPOCOB 00ECTICYCHUSI TOYHOCTH, METPOJIOTHYECKON MPOCIECKUBAEMOCTH U JIOCTOBEPHOCTH.
Lens nanHoi pabOThl — OOOOIIUTH MOIXO/ABI K OMUCAHWIO MHOTOMEPHBIX KBAaHTOBAHHBIX MPOCTPAHCTB M
MOKa3aTh BO3MOXKHOCTH HMX aJanTalud K IH(POBOH KOJIOPUMETPHH, YTO IMO3BOJIMT MUHHMH3UPOBATH
YacTHBIE U TII00aTbHbBIC PUCKU, BOSHUKAIOIINE B U3MEPCHUSIX.

Jnst unenTndukanuy nera nudpoBas KOJIOPUMETPHS UCIONB3YeT CTaHAapTHBIC IIBETOBBIE MOJCIH
Y TIPOCTPAHCTBA, OONBIIMHCTBO U3 KOTOPBIX SIBJISIOTCS] AMITMPUIECKUMH M COBEPIICHCTBYIOTCS ITPH ITEPEX0/Ie
OT CTaHJAPTHBIX K pEalibHBIM YCIOBUSAM HaOMIOICHHS ¢ Y4ETOM ()eHOMEHOB 3peHUs U BO3pacTa Haluoaa-
teneit. Llupposoe n3obpaskeHHe ¢ TOYKH 3pEHHST U3MEPEHHSI MOXKET OBITh MPEICTaBICHO KOMOMHATOPHON
MOJIENBI0  MH(POPMAIIMOHHO-U3MEPUTENIFHOTO  KaHajla C BO3HUKHOBEHHEM ()EHOMEHa I[BETOBOTO
KOBapHAIMOHHOTO THIEPKy0a, TPEOYIOIIEro 3HauuTeIbHOTO 00bEMa MaMsITH Ul XpaHeHUs] U 00paboTKu
JMaHHbIX. [lepexol OT KOBapHAallMOHHOTO THIEPKy0a K MaTpuIlaM BBICOKHX Pa3MEpPHOCTEH W TEH30pam
MEepBOro, BTOPOro M 0oJiee BBICOKUX PAHIOB IPEJOCTABISET IMEPCIEKTHBY ONTHUMHU3AIUK IIBETOBBIX
napameTpoB I(POBOro N300paKEeHHUS IO KPUTEPHIO HHPOPMAITHOHHON SHTPOITHH.

TeH30pHOE HCUHUCICHHE TPEAOCTaBISIET BO3MOXKHOCTH pACIIMPEHHS JIMHAMHYECKOTO Juara3oHa
B U3MEpPEHHSX IIBETa, OMHCAHWSI MHOTOMEpPHBIX BEKTOPHBIX TMOJECH W KBAaHTOBAHHBIX TPOCTPAHCTB
C MHJICKCAIlUeH TEH30POB M Pa3JIOKECHUEM WX Ha MATPHUIIBI HU3KHX MOPSAKOB.

IlpennoxeHHbI1 KOMIUIEKCHBIA TMOJIXOJ, OCHOBAaHHBIH Ha TEH30PHOM WCYHUCICHUH, IO3BOJISIET
paccMaTpuBaTh IIBETOBOE MPOCTPAHCTBO KaK COBOKYITHOCTh HAIpPAaBICHHBIX BEKTOPHBIX IIOJICH,
MOJBEPralONINXCsl  OMEpalusIM JIUCKPETU3alliK, KBAHTOBAHWS M KOJIUPOBAHHUS, KaK JIHHAMHUYECKYIO
OTKPBITYIO CHUCTEMY, OOMEHHMBAIOLIYIOCS MH(OpMAIMell ¢ OKpYyKalolled cpeloil ¢ 3aJaHHBIM YPOBHEM,
U WISHTU(UIHMPOBATh LBET C 3aJaHHBIMH YPOBHSMH TOYHOCTH, JIOCTOBEPHOCTH, HEOMPEICIIEHHOCTH
Y SHTPOTINH.
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DOI: 10.21122/2220-9506-2022-13-3-216-227

Aopec ona nepenucku: Addpress for correspondence:

Casrosa E.H. Saukova Y.

benopycckuil HayuoOHaIbHBIN MEXHUYECKUTl YHUBEpCUmenmn, Belarusian National Technical University,
np-m Hesasucumocmu, 65, 2. Munck 220013, berapyce Nezavisimosty Ave., 65, Minsk 220013, Belarus
e-mail: savkova@bntu.by e-mail: savkova@bntu.by

Jna yumuposanua: For citation:

Y. Saukova, M. Hundzina. Y. Saukova, M. Hundzina.

Tensor Calculus in Digital Colorimetry. Tensor Calculus in Digital Colorimetry.
TIpuGopsl n METOIBI H3MEPEHNUI. Devices and Methods of Measurements.
2022.—T. 13, Ne 3. - C. 216-227. 2022, vol. 13, no. 3, pp. 216-227.

DOI: 10.21122/2220-9506-2022-13-3-216-227 DOI: 10.21122/2220-9506-2022-13-3-216-227

217



Tpubopsl u memoosi usmepenuii
2022. - T. 13, Ne 3. - C. 216-227
Y. Saukova, M. Hundzina

Devices and Methods of Measurements
2022, vol. 13, no. 3, pp. 216-227
Y. Saukova, M. Hundzina

Introduction

Digital colorimetry focused on qualitative and
quantitative methods for determining color from
digital images faces the need to work out issues of
ensuring accuracy, metrological traceability and reli-
ability, since any object can have many implementa-
tions in the form of digital images, and any digital
image can be processed many times, increasing or
decreasing accuracy and reliability. It is because
any object can have many implementations in the
form of digital images, and any digital image can
be processed many times, increasing or decreasing
accuracy and reliability. Basic colorimetry assumes
normalized observation conditions, and higher colo-
rimetry includes “methods for assessing the percep-
tion of a color stimulus presented to an observer in
a complex environment that we observe in everyday
life” [1]. Methods of transmitting color information
of an image in telecommunication systems are based
on the use of the principles of higher colorimetry [2].
The concepts of “absolute” (differential) and “rela-
tive” colorimetry take into account the possibilities
of color reproduction of technical means [3]. The
idea of differential colorimetry consists in determi-
ning minor color differences on conditional vir-
tual scales being developed for example in express
methods of analytical measurements using a smart-
phone [4] terrain studies using satellite images [5, 6].
Relative colorimetry takes place in color-rendering
systems allowing colors to be shifted taking into ac-
count the movement of the “white point” to a new
position taking into account the limitations of the co-
lor coverage of technical devices [3, 7]. At the same
time, there is a need to expand the dynamic range of
digital images objectively limited by the color cove-
rage of recording, transmitting and displaying de-
vices in order to bring them as close as possible
to the dynamic range of human vision (0.000001—
100000000 cd/m?) [8, 9].

In areas not related to measurements (televi-
sion, computer games and design) multilayer HRDI
images are used [8] to improve their visual percep-
tion with the transition from standard (SDR) 005—
100 cd/m? to high (HDR) 0.0005-10000 cd/m? dy-
namic range and vice versa using special transfer
functions in accordance with the recommendations
of BT.709 [10], BT.1886 [11], BT.2100 [12] of
the International Telecommunication Union (ITU).
At the same time, traceability is ensured by setting
“white”, “black”, 18 % and 75 % brightness levels

adaptable to a standard monitor and standard obser-
vation conditions [12]. The sources of metrologi-
cal traceability of color in measurements are stan-
dards (standard samples, reference measuring instru-
ments) and reference measurement techniques that
serve to establish reference points of conditional
virtual scales in color spaces. The issues that arise
when expanding the dynamic range of digital images
are as follows: 1) should the measurement results be
viewed each time in a new interpretation of the color
space, or should the same space be used? 2) is the
color space static or a dynamic system? According
to the authors, when implementing the measurement
the color space should be considered as an open dy-
namic system taking into account the operations of
sampling and quantization from the stand point of a
single integrated approach based on tensor calculus.
A large number of works are devoted to the develop-
ment in colorimetry of the concept of a color tensor
in relation, however, to the development of an equi-
distant color space [13]. We are interested in the fur-
ther development of this topic namely the issues of
dynamic range and quantization of spaces that have
found application in theoretical physics.

The purpose of this work was to generalize ap-
proaches to the description of multidimensional
quantized spaces and to show the possibilities of
their adaptation to digital colorimetry, which will
minimize private and global risks arising in measure-
ments.

The problem of color multivariance and the
phenomenon of covariance hypercube

A digital image is an information model “an
image more or less similar (but not identical) to
the depicted object” [14] described according to
ISO/IEC 19794-5 ' by a two-dimensional representa-
tion of the brightness and texture of an object under
certain lighting conditions, a discrete-continuous
structure consisting of a finite number of elements (pi-
xels) each of which has a geometric reference to the
displayed object and its state in time. Color measure-
ment consists in determining the color coordinates
in the hardware-dependent RGB color space by av-
eraging the intensity values in the red (R), green (G)
and blue (B) color channels over the selected

"ISO/IEC 19794-5:2011 Information technology —
Biometric data interchange formats. Part 5: Face image
data
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area of the digital image, comparing the obtained
values with the built-in scale of virtual measures
providing metrological traceability, transforming
the obtained values into hardware-independent the
space (for example, XYZ) and the calculation of the
chromaticity coordinates. Each control point on the
surface of the object is an equally bright non-point
emitter and the pixel area of the digital image cor-
responding to this control point is considered as a
finite set of nominally identical intensity samples in
the R, G, B color channels [15]. We understand by
metrological traceability the property of the mea-
surement result according to which the result can be
correlated with the basis for comparison through a

documented unbroken chain of calibrations each of
which contributes to the measurement uncertainty.
The digital image is the result of convolution of the
spectral distribution functions of the elements “illu-
minator”, “illuminated surface”, “recording device”,
“software”, “display device” in the color space and
an information model of any of them, provided that
all other elements are validated [15].

If X; is an input quantity (spectral distribution
function or averaged intensity) the j-th element of
the information and measurement channel and x;; is
the k-th random variable implementation with uncer-
tainty u(x,), /=1, .., m, then the parameter u(x;;,x;)
is the covariance of x;; and x;; as shown in Table.

b3
b

Table
Validation model of the information and measurement channel
Element j
. . i i i - Output
Realization K Illuminator Illuminated Recor'dlng Software Dlspl'ay de utpu
surface device vice param.
X X
: X, X, 4 X5
K, 2x11 X2 X13 X4 Xis Y,
u(xyp) u(xp, X51) u(xy3, X31) U(X145 Xy7) u(xys, Xs1)
X X X X X
K2 21 ) 22 23 24 25 Y2
u(xpp, X15) u(xp) u(Xp3, X35) U(Xpq5 Xy5) U(Xps, Xs5)
K, X3 X32 2x33 X34 X35 Y,
u(xyy, Xy3) u(x3,, X53) u(x33) u(xy3, Xy3) u(x3s, Xs3)
K, X41 X4 X43 2x44 Xy45 Y,
u(Xgy5 X14) U(X g2, X24) U(Xg3, X34) U (xg4) u(Xys, Xs4)
X5 Xsp Xs3 Xs4 Xss
K, , Y,
u(xsy, Xy5) u(Xsp, X55) u(xs3, X35) U(Xs45 Xy5) u’(xss)
Km xml xm2 xm3 xm4 me Ym
u(xml’ ‘xlm) u(me’ x2m) u(xm3’ x3m) u('xm4’ x4m) u(me’ xSm)
The elements highlighted with a gray fill are ,
measurement objects. Let’s focus on implementa- Y =4 1)
tions K,—K (implementations with two or more k i ’

unknowns that increase information entropy are not
considered here). The output parameter Y, is defined
by a set of chromaticity coordinates in a hardware
independent space:

where 4 is the matrix of transition to the chromaticity
coordinates of the hardware independent space; r, g,
b are the chromaticity coordinates in space RGB [7]:
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p— R .
T R+G+B’
j— G .
" R+G+B’
B
" R+G+B’

g (2

where R, G, B are color coordinates determined by
averaging the intensities over a region of MxN pi-
xels in the red, green and blue color channels of a
digital image:

1 MN-I
R=WE£R&;
| MN-1
G:WE{JZ}GM; 3)
| MN-1
BZWZ{Z}BW

In turn, each element of the information-
measuring channel, described by the value X;, can
be represented by a set of W variables (aperture,
viewing angle, exposure time, illumination, type of
quantization, coding, etc.) characterizing the mul-
tivariate states of the information-measuring sys-
tem. Therefore, Table of the model VM(K;, X;, ;)
can be represented as a family of covariance ma-
trices.

According to ISO/IECGuide 98-3/Suppl 2:20117
the covariance matrix is a positively semidefinite
matrix of dimension NxN, where N is the number
of input quantities, on the main diagonal of which
there are squares of standard uncertainties corres-
ponding to the estimates of the magnitude, and the
remaining members of the matrix represent cova-
riances between pairs of corresponding estimates of
the elements of the magnitude:

u(xji’xkl)=;2 Z(xji_ul)(xkz_llz), (4)
m—=1" s
where [, 1, are mathematical expectations by signs;
C is multiple points in a class.
So for each j-th implementation, the dimension
of the matrix will be 5x5. To implement K, the ma-
trix has the form:

2ISO/IECGuide  98-3/Suppl 2:2011 Uncertainty
of measurement. Part 3: Guide to the expression of
uncertainty in measurement (GUM:1995). Supplement 2:
Extension to any number of output quantities

“2("11) u(x X)) u(ynxz) u(xgnxg)  wlegsxs)
u(xp55Xp1) uz(xlz) u(xpp,Xp3)  u(xp,x4)  u(xp.Xs)
“I(Xl"‘X5)= u(xp3,%,)  u(xg3,%,) “2()‘13) u(xi3,%,)  u(x3,%5) (5)
u(xig>xy)  u(xx,)  u(xg,x;) ”2("14) u(Xy45%5)
u(xis,xp)  u(xps, %) ulxs, X)) ulxs,xy,) “2(x15)

The abbreviated form of writing this matrix:
2 . .
u (X . 1=

UI[/_ = ( lj) ) / K (6)
' u(xy,x ;) i#j
where uz(xij) is variance of the estimate x;;; u(x;, X,,,)
is covariance between values x; and x,,,,.

Similarly, we write for implementations K,—K.
The uncertainty u(Y,) is calculated from the expres-
sion:

u(;)=Cu(X,)C’, (7)

where C is matrix of sensitivity coefficients with di-
mension NxN.

The sensitivity coefficients can be defined as
partial derivatives of the original function f connec-
ting the variables X, X, ..., X5 [15]:

_|

For the case of the triad X, X, X; the covariance
cube of the information and measurement system is
shown in Figure 1 on the faces of which the matrix
elements are located. There are only six triads as six
faces of this cube can be displayed. In this case, the
covariance cube contains 3 X (mxm) elements.

X31 X322 X33 X34 X35
X31  _
X33 " ~ S
33 4 X2
X35 11— Xi2- Xi3_ Xige Xi5 ¢
o X22
X11  |u?(xy,) | cov cov cov cov \/
; d
\/ X23
x12 cov 2(x19) | cov cov cov \\\
- ]| X2a
X13 cov cov  [u?(xy3) | cov cov \
T \\ x2m
u?(x;,) cov p,
X14 cov cov cov =
IS X2m
g 2
Xim | cov ae cov cov W Cas) X23
4
X21

Figure 1 — Covariance cube of the information and mea-
surement system VM(K;, X;, X,, X5, Y),i=1,..,m
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Considering that the covariance cube generally
contains jWm® elements (where j is the number of
variables X}, and m is the number of implementations
K.), it can be further considered a covariance hyper-
cube of the information and measurement channel.

Transition to orthogonal matrices of high
dimensions

The problem of color multivariance in digital
colorimetry is solved with the help of orthogonal
matrices of high dimensions that allow display-
ing the states of the information and measurement
channel in a multidimensional space. The graphical
representation of a hypercube through 5-matrices
with fixed (a, b, c¢) and sliding (a, B, v) indices in the
form of a set of 3-matrices of n-dimensions can be

a b ¢
> £
/,?c /I?c /b*c
a a a
a lb lb lb
oc Te o /
a b c a b c a b c
C C C
A 4 a
a ) a a
b| 4 I o
o¢ ac QG
a b ¢ 2 b C 2 LG
/b'Pc (P /t?c
a a a
¢ s o b
Y e Clc ﬂc
a bec a b c a b c
a

represented compactly in the interpretation of Pen-
rose diagrams [16, 17], as illustrated in Figure 2.

This diagram is an image of multilinear func-
tions or tensors and represents several shapes con-
nected by lines. Each element of the original matrix
is multiplied by the corresponding element of the
convolution matrix. By the derivative f, of the image
fwe will understand:

_Y )
ox  |¥=x

Y=y

S (@) =i~ Sy (€]

Under the convolution matrix, we will under-
stand the matrix of coefficients which is “multi-
plied” by the values of the pixel intensities of the
image to obtain the desired result. An example of
such matrices used to detect lines in [18] is shown
in Figure 3.

- T J

%3k sk

k% k

* 2k ok

*k sk %k

% %k 3k

b

Figure 2 — Representation of the 5-matrix A4afByde in the form of a set of matrices: a —based on the Crohn’s

methodology; b — in the form of Penrose diagrams

-1 -1 -1 -1 -1 2
2 2 2 -1 2 -1
-1 -1 -1 2 -1 ] -1

Figure 3 — Example of convolution matrices

Then the total sum of these products is found,
which, if necessary, is divided by the normalization
coefficient (the sum of the elements of the convolu-

-1 2| -1 2 0 -1 -1
-1 2 -1 -1 2 -1
-1 2| -1 -1 -1 2

tion matrix). This is necessary in order for the average
intensity to remain unchanged. Then the brightness
value of the current pixel can be set by the formula:
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nxm

L= wz,
i=1

(10)

where z; is the brightness value of the pixel corre-
sponding to the mask coefficient w,.

For example a command in Wolfram
Mathematica system, that displays the origi-
nal image of the motherboard as well as its
modified images, as shown in Figure 4 is writ-
ten according to the developed program [19] as fol-
lows:{ f,ImageConvolve| f,maskal]//ColorNegate,

ImageConvolve[f,maska2]//ColorNegate,ImageCon
volve[ f,maska4]//ColorNegate} .

The figure demonstrates the reduction of de-
grees of freedom due to the use of convolution ma-
trices during the transition from full-color to half-
tone and binary images. The most commonly used
filter based on convolution matrices is the Gaussian
filter (the matrix is filled according to the normal
law). In this case, the elements of the matrix are
normalized. An example of such a matrix is shown
in Figure 5.

Figure 4 — Line detection on the motherboard snapshot

0.00987648 0.0796275 0.00987648
0.0896275 0.641984 0.0796275
0.00987648 0.0796275 0.00987648

Figure 5 — Convolution matrix

Matrix elements can be defined using the
built-in function GaussianMatrix in the Wolfram
Mathematica system.

Color tensors in spaces of directed fields

Taking into account the recording of orthono-
mized matrices distributed according to the normal
law for some image f the structural tensor takes
the form (subscripts denote spatial derivatives and
the dash indicates convolution with a Gaussian fil-
ter) [19]:

- —
VA N
— |
VS
The tensor describes the local differentiated

structure of the image and is suitable for finding
edges and corners. The original image has the form:

)

R
G|
B

s

(12)

If the structural tensor G is considered a color
tensor, then for the RGB color space it can be writ-
ten as:

2 2 2
R, +G, +B; R R, +G.G, +BB

G= 7 .a3)

R R, +G .G, +BB,

2 2 2
Ry+Gy +By

If a color tensor describes a two-dimensional
structure at a certain point in the image then its own
value can be determined for it by the formula [13,
20] (the superscript 7 denotes the transpose opera-
tion):

S VR R RN eE)

The parallel operation of determining the
intensities of a digital image using a structural
color tensor in the color channels R, G, B is car-
ried out using the commands ImageHistogram]f,
Apperance->"Separated’’], as shown in the Fi-
gure 6 [18].

The eigenvalue indicates the local orientation
on the image with the maximum color change.
The elements of the tensor G are invariant when
the spatial axes rotate and move. This represen-
tation is applicable for classifying the color in
the image taking into account situations when
the color change is caused by a shadow or darke-
ning of the image the influence of the presence
of glare.
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a
L _/_\’J
0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0
- —
0.0 0.2 0.4 0.6 0.8 1.0
b

Figure 6 — The result of using a structural tensor: a — digi-
tal image of a blood sample obtained using a microscope;
b — RGB-image histograms

The second-rank color tensor is described
in [13] and is used to construct Macadam balls de-
scribing the XYZ color space as a “single-cavity hy-
perboloid in four-dimensional spacetime having the
form” [13]:

R
Rab_zgab =0, (15)
where R, is the Ricci curvature tensor obtained from
the R, space-time curvature tensor by convolving
it by a pair of indices; R is scalar curvature that is,
the collapsed Ricci tensor; g, is metric tensor.

Then you can map a certain color vector to any
point on the color locus. “Since all vectors of type
08§ start from the zero point, the length of these vec-
tors (color saturation) is determined by a simple ex-
pression of the type” [13]:

D=\/x2 +y2 +17 R
where x, y is coordinates of the end of the vector in

the coordinate system x’y’; L is brightness of the end
point of the vector.

(16)

The divalent symmetric color tensor G,, can be
expressed by decomposing the color vector g; by the
orts of the basis ey, e,, e; [20]:

H 0 0
G,=10 S 0f=
0 0 L
arctg(x/y) 0 0 a7
= 0 \/x2+yz+L2/\/)ca2+yuz+La2 01,
0 0 L

where H is color tone; S is saturation.

The essence of this tensor is to set the coordi-
nates for the metric tensor at a specific point on the
color diagram [13]. Moving from the single-cavity
hyperboloid shown in Figure 7 to the standard color
body of the XYZ space, we will deal with tensors of
higher orders.

X T, 7K

Figure 7 — Representation of the XYZ color space as a
one-band hyperboloid with decomposition into families
of vectors

Tensors come out of the zero point, intersect
the plane of the locus and can be combined into
families of vectors X* Y*,Z", X"}Y"}Zk, ththZhj,
quququ, ththth. They form directed fields by
zoning the color body of the XYZ space [21] satis-
fying the expressions for calculating the chromati-
city coordinates at the color locus [3]:

X
x= ;
X+Y+Z

— Y .
Y Xir+z

VA
z= .
X+Y+Z

(18)

The standardized palette (as an example, the pa-
lette shown in Figure 8a) is divided into six spatial
sectors according to the principle of predominance
of R (red), G (green) and B (blue) components (I —
RGB; 11 — RBG; 1l — GBR; IV — GRB; V — BRG;
VI — BGR) and transformed into the coordinates of
the XYZ space, whose chromaticity coordinates at the
color locus represent the intersection points of the
color tensors (Figure 8b) [21].
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Figure 8 — Zoning of the XYZ color space: a — standardized computer palette; b — a color locus divided into sectors

Tensor indexing and singular value decompo-
sition methodology [21] makes it possible to build
low-rank approximations of matrices that require
less space in computer memory and less computing
resources to work with them.

Tensor calculus in discrete-quantized space

Multiple registration of a static object with in-
crementally increasing exposure time allows to
determine the R;GB; color coordinates for each
irnplementation combine them into vector fami-
lies (R G B tensor) transform them into X;Y,Z,
vector farnlhes (X el Z , tensor) moving from the

zero point to the plane of the color locus, expan-
ding the dynamic range without losing metrologi-
cal traceability. From the point of view of general
relativity, such a displacement can be considered as
a parallel transfer of some vector [23] 4', from the
starting point P, with coordinates x’, = x'(y,) along
the curve x/ = x/(u) to the point P, with coordinates

| =x'(4,), (up<p<p,) which connected to each
other. The unique (according to Cauchy’s theorem)
vector A'; = A'(u,) is the result of parallel transfer
and characterizes the value of the field A'(x(p)) at the
point of ;. The vectorgetsincremented [22]:

(19)
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where 8x is infinitesimal vector to which the transfer
is carried out; Fikj is the coefficient of connectivity
characterizing the degree of curvature of space.

The dynamics of open quantum systems in the
language of tensor networks is described through
Hamiltonians and the quantum reservoir model as
a set of non-interacting quantum oscillators [22]
whose dimension is greater than the dimension of the
system. The quantum diagram of the dynamics of the
system and the reservoir (upper and lower channels,
respectively) [22] is shown in Figure 9.

Figure 9 — Diagram representation of color space sam-
plingin the form of a time tensor network

Connections i between two channels (system and
reservoir) illustrate the correlation between reference
points — physically implemented traceability sources
Js (standard samples) and their j; images at certain
points in time. The Hamiltonian of the complete sys-
tem is generally given by the expression [22]:

H=H,+H,,, (20)
where

Hy=H ®I+I1®Hg; Q1)
Hiy, =72 4,®B, (22)

i=1

where H, and H), are hilbert spaces of the system
and its reservoir, respectively; / is information;
H,, is mutual information entropy between spaces;
v is characteristic constant of interaction between
the reservoir and the system.

The dynamics of the complete system in the
form of the Trotter expansion has the next form
[22]:

[p(1)) = @y (DD, ()., (D, (1) [ p(1)) + O(Y7), (23)

where @(7) is dynamic mapping responsible for free
dynamics over time T;

@, (1) = exp(—itH, ) ® exp(itH, ) ® exp(~itH ) ® exp(itH " ), (24)
®, (1) is a dynamic map that is responsible for the

dynamics only involving the interaction Hamiltonian
over time 1. Parameter O(yt) specifies the accuracy

of the temporal tensor network with the sampling
step t. The time discreteness is given as N = ¢/t.

The process of color space quantization is
conveniently viewed in terms of the depth of the
reservoir’s memory. Assuming that the initial state
of the reservoir does not depend on the initial states
of the system, we write an expression for the bright-
ness levels B [22]:

ro. .
—.., "
(B (t+80)B,(1)) 2=l -1

k2
-1 (25)

The vector increment o¢ is the nominal quantiza-
tion step. In terms of the memory depth 7 of the ef-
fective reservoir R, the mutual information between
two quantum systems will be [22]:

(26)

[(L§R)=S(ML,R ||ML®MR)~eXp(— ),

(p—g)c
T
where M is arbitrary density reservoir temporary net-
work matrix with a set of not necessarily orthogonal

vectors {V,},, represented in the form [22]:

+
M=V V. @7
To select a sufficient dimension of the effec-
tive reservoir, the criteria of entanglement entropy,
Rényi, and von Neumann are used in [22]. Renyi en-
tropy is calculated by the formula 0 <a <1 [22]:

1

InTrM . (28)

S(M)=
1—
The relative entropy is zero if and only if. For

the von Neumann entropy [22]:

d = exp(2nyT (1—In7y1)). (29)

Note that the contributions to the time evolution
of the system from its previous states decrease expo-
nentially as the time interval between the current and
previous states of the system increases. The charac-
teristic time interval in which the previous states of
the system make a significant contribution is equal
to the depth of the reservoir memory 7, i. e. bits per
channel [22].

Conclusion

Since digital colorimetry is based on the trans-
formation of color spaces, their discretization, quan-
tization, encoding and decoding, it is proposed to use
the apparatus of tensor calculus to solve the problems
of ensuring metrological traceability and reliability.
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The presented validation model shows the mul-
tivariance of the states of the information-measuring
channel through the phenomenon of the covariance
hypercube. Only implementations with one unknown
make it possible to perform measurements. The tran-
sition to orthogonal matrices of high dimensions
leads to redundancy of information when identifying
the states of the information-measuring system and
its elements.

The proposed approach is based on the ranking
of intensities in color channels and the division of
color spaces into areas of directional fields, which
makes it possible to reduce the uncertainty of color
measurement. Parallel transfer of vectors with subse-
quent indexing of color tensors makes it possible to
expand the dynamic range of digital image intensity.

A promising area of application of tensor cal-
culus in digital colorimetry is the solution of inverse
problems associated with the modeling of informa-
tion and measurement systems, the creation of vir-
tual objects, and exploratory studies of traceability
under high uncertainty.
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