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Abstract

This work considers a model for measuring non-additive quantities, in particular a model for subjective
measurement. The purpose of this work was to develop the measurement theory and form of a measurement
model that uses the corrected S. Stevens measurement model.

A generalized structure was considered that included an empirical system, a mathematical system, and
a homomorphism of the empirical system into a numerical system. The main shortcomings of classical
measurement theories seem to be: 1) homomorphism does not display operations (in this case, one can-
not speak of the meaningfulness of the model); and 2) there is no empirical measurement model that could
confirm the existence of a homomorphism. To overcome the shortcomings of existing theories a defini-
tion of the measurement equation is given. As a result a measurement model is obtained that is free from
the shortcomings of classical measurement theories. The model uses the corrected model of S. Stevens and
the reflection principle of J. Barzilai.

The measurement model was tested using laws that were obtained empirically. Using the model it is
shown that Fechner’s empirical law is equivalent to Stevens’s empirical law. This means that the problem
which has attracted attention of many researchers for almost a century, has been solved.

A numerical example demonstrates the possibilities of the proposed measurement model. It is shown that
the model can be used for extended analysis of expert assessments.
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Mojaeab u3MepeHus: HeAAAUTUBHOW BEJIUYUHBI

B.M. Pomanuak, I1.C. CepenkoB

benopycckuil nayuonanshulil mexuudeckul ynugeepcumen,
np-m Hezasucumocmu, 65, . Munck 220013, Berapyco

Hocmynuna 15.08.2022
Hpunama k nevamu 14.09.2022

[Ipemiosxkena MoJenb W3MEPEHUs] HEaJJUTUBHONW BEIMYUHBI, B YaCTHOCTH MOJENb CYOBEKTUBHOTO
nzMepenust. Llenpio gaHHOW pa0OTHI SBISIIOCH Pa3BUTHE TEOPHHM HM3MEPEHUH W (HOpPMHUpPOBAHUE MOJCIH
CyOBbEeKTUBHOTO H3MepeHus. J[ns 00OoCHOBaHUS MOJENM HCIOJIb30BaHA CKOPPEKTHPOBAaHHAs MOJIENb
CruBeHca.

Paccmotpena 06001eHHas CTPYKTYpa MOJIESTH U3MEPEHNs1, KOTOpast BKII0YAET IMIIMPUUECKYIO CUCTEMY,
MaTeMaTHYEeCKYIO CUCTEMY U TOMOMOP(H3M SMIUPHUECKON CHCTEMBI B YUCIIOBYIO CUCTEMY. Y CTAaHOBJICHO,
YTO OCHOBHBIMH HEJOCTATKaMH KJIACCHYECKUX TEOPUH M3MepeHHs SBISIOTCS: 1) romomopdusm
HE 0TOOpakaeT orepanuy B CUCTEMax, YTO MO3BOJIMIO ObI TOBOPUTH 00 OCMBICICHHOCTH TEOPETUYECKON
MOJIENTM U3MEPEHHI; 2) OTCYTCTBYET MOJIEIb SMIUPUIECKOTO U3MEPEHUS, KOTOpasi MOTjia Obl MTOATBEPIUTh
CyllecTBOBaHHE romomopdusma. [l mpeonosieHuss HEIOCTaTKOB CYILIECTBYIOMIUX TEOPUIl ONpEeaerIeHO
YpaBHEHHE U3MEpPEHHS, CBS3BIBAIOIICE PE3YIIbTAaThl OTOOPAXKEHUSI IMIIMPUIECKON Orepali B YUCIOBYIO,
a Takke chopMyIHpoBaHA MOJENb AMIUPHYCCKOTO HM3MepeHus. [lJisi TIOCTpOSHUs] MOJENU H3MEpEeHHs
MPE/UI0KEHO HCIOJIb30BaTh CKOPPEKTHPOBaHHYIO Mojeiab CTuUBEHCa, KOTOpas JIONOJHEHA MPHUHIUIIOM
otpaxkeHus JIx. bapaunas. B ocHOBYy Mojenu KOJMYECTBEHHOTO M3MEpEHHs MOJIOKEHBI JiBa crocoda
M3MEPEeHMH, C MOMOIIbI0 KOTOPBIX 3MITHPUUECKH H3MepseTcss ocoObli mapaMeTp — perTHHT, CBA3aHHBIN
C Pa3HOCTBIO MJIM OTHOIICHWEM HMCKOMBIX 3HaueHHH BenndrHbl. OOOCHOBAHO MPEIIONOKEHHE O TOM, YTO
o0a cnocoba M3MepeHHss MOXKHO HCIIOJIb30BaTh COBMECTHO JUISI U3MEPEHHsI OAHOM M TOW YK€ BEIWYHHBI.
[Tpruém pe3ynbTaThl U3MEPEHHs OYAYT B ONPEICIEHHOM CMBICIIEC IKBUBAJICHTHBI.

ITokazaHo, 4TO TakO! MOAXOJ MO3BOJIAET IOJYYUTh MOJAEIb KOIMYECTBEHHOIO MU3MEPEHUs, KOTopas
cBOOO/IHA OT HEJIOCTATKOB KJIACCHYECKUX Teopuii m3mepenus. CHopMyarpoBaH alropuT™M KOJIUIECTBEHHOTO
W3MEpEeHHs, a TAaK)Ke MPUHLUI OTPaKCHHUS, 00ECIICUNBAIONINN COOTBETCTBHE dMIIMPHUECKON W YHCIOBOU
CHUCTEM MOJETIH.

[Ipennoxennass Mojenb M3MEpPEHHs MOJATBEpKAeHa sMnupuuecku. C e€ MOMOIIbIO MMOKa3aHO, YTO
SMIMpUYEcKHil 3aKoH PexHepa SKBUBAJICHTEH IMIHpUUEecKOMY 3akoHy CTuBeHca. TeM caMbIM IOJIy4eHO
pelIeHne Kaccu4eckoi npo0iaeMbl CyObeKTHBHOTO U3MEPEHUS.

Ha xoHKpeTHOM IpHMepe MPOAEMOHCTPUPOBAHBI BO3MOKHOCTH IPEIIOKEHHON MOJEIH U3MEPEHUSI.
IToka3aHo, 4TO MOJIEIb MOKHO UCIIOJB30BATh JUIsl PACHIMPEHHOIO aHAIN3a YKCIEPTHBIX OLEHOK.

KuioueBble ciioBa: Teopust n3Mepennid, 3akoH dexuepa, 3akon CTuBeHca, MojieNb Parra, KOHIIENT OCMBIC-
JICHHOCTH.
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Introduction

Measurement theory permits us to consider
both objective and subjective measures from a uni-
fied point of view. Objective measures are asso-
ciated with metrology [1]. Metrology is the science
of measuring. The basis of metrology is units of mea-
surement. Metrology also includes measuring instru-
ments. The theory of objective measures is well de-
veloped. The theory of subjective measurements is
based on the opinions and assessments of experts and
requires further development [2].

Measurement is currently referred to as the pro-
cess of obtaining an experimental value or values
of a quantity that can reasonably be attributed to a
quantity [3]. Every science experiment should fol-
low the basic principles of proper investigation. An
objective experiment is carried out using technical
devices. Subjective experiments are based on expert
opinions, feelings, and general impressions. And, if
the justification of an objective experiment is tech-
nical devices, then further development of the mea-
surement theory is required to verify the adequacy of
the results of the subjective measurements [4].

Measurement theory permits us to consider both
objective and subjective measures from a unified
point of view. Objective measures are associated
with metrology. Metrology is the science of measu-
ring. The basis of metrology is units of measurement.
Metrology also includes measuring instruments. The
theory of objective measures is well developed. The
theory of subjective measurements is based on the
opinions and assessments of experts and requires
further development [5].

The additive representation of the measurement
process assumes that the addition operation has an
empirical meaning. Representative measurement
theory was created to overcome the limitations of
additive measurement theory [6—8], (Figure 1). The
representational measurement theory was originated
by S.S. Stevens and other scientists. Representatio-
nal measurement theory is based on the properties of
binary relations and defines measurement as a map-
ping between two relational structures, an empirical
one and a numerical one. For simplicity, since alge-
braic operations can be reduced to relations without
loss of generality, representative theory does not in-
clude algebraic operations.

Empirical system Mapping Mathematical system

Objects 4,, 45, Ay, ... u; = uld;) Values of the magnitude
. . depends on the type of measurement

Relationships (4;, 4;) ccale Uy, Uy, Us, ...

Figure 1 — Model by representative measurement theory

S. Stevens (1946) believed that numerical va-
lues should be assigned to objects according to cer-
tain rules. A measurement scale is a classification
that describes the assignment rules.

New trends have appeared in the theory of
measurements, which should be taken into account
to substantiate a model of measurement. For exam-
ple, a mathematical model of an empirical system
was considered [9-10]. The model for measuring
is proposed in the papers [11-12]. Let the general

Mathematical model
of an empirical system

Objects 4,, 4,, 45, ...

Ordered pairs
(4. 4)

Figure 2 — General measurement model

Mapping
u; = u(4;)

Measurement result
Ry = R(4;, 4))

measurement model (Figure 2) include an empirical
system, a mathematical system, and a mapping from
an empirical system to a mathematical system:

1. Empirical system. Objects of measurement
Ay, 4y, 4, ... and pairs of objects (4,, 4)).

2. Mathematical system. u; is a numerical value,
and (u; — u;) is the operation result.

3. Mapping. Each object 4, maps to a value u;
and each pair of objects (4;, 4;) maps to the opera-
tion results (u; — ;).

Mathematical system

Values of the magnitude
Uyy Uy, Usy ..

The result of the operation
R(A;, 4) = u; — u;

1
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Objects are mapped to values by the function
u; = u(4;), and pairs of objects (4;, 4;) are mapped ® 4i PS 4 PA 43
to the difference of values (u;—u;). Hence, there N .
are two mappings (see Figure 2). Let the empirical Figure 3 — Empirical system. The rod (4,, 45) consists of
system be an affine line. Let 4,, 4, and 4, are arbi- WO rods (4;, 4,) and (4, 43)

trary points on a straight line, and (4, 4,), (4,, 43) The model for measuring the length of the
and (4, 43) are rigid rods (Figure 3). Let’s measure  rod (Figure 4) follows from the general measure-
the length of these rods (Figure 3). ment model (Figure 2).

Empirical system Mapping Mathematical system

Points on a straight line u; =u(4;) u; — point coordinate values

Ay, Ay, A, ...

Vectors Vector mapping Measurement equation

(41, 45), (45, 43), (4;, 43) sz =R(4;, A;) R(AizAj):ui_uj
Figure 4 — Rod length measurement

Here the expression (4;, 4;) means a vector. The For the practical implementation of measure-

point 4, is known as the start point, and the point 4;,  ment, i. e., for empirical measurements, an appropri-

is known as the end point. A vector is the result of an  ate model of measurement is needed. Stevens pro-
empirical measurement that characterizes the diffe-

rence in position of two points on a straight line. Each
vector (4;, 4;) is assigned the value R; = R(4;, 4)).

The fi laR(A4,, 4)=u,—u;i d to calculate th . . .
meZsSIr*:]nllleit Eesllilltj )Tth foﬁ/nllsl 12861:3 (A04 Cj‘)’u:il é_; and A, on a straight line, changes uniformly. Then
. i 7 i '

is used to determine the values of the quantity. the vectors (4,, 4,) and (4, 4;) are equal and, con-
The measurement result of the vector (4,, 45) sequently, the measurement results of R(4,, 4,) and
is equal to the sum of the measurement results of the ~ R(4,, 4;) coincide. Figure 5 shows the model of

posed a model in which he used a certain group of
objects whose magnitude changed uniformly [4]. For
example, in Figure 3, the position of points 4,, 4,

vectors (4,, A,) and (4,, 45). S.S. Stevens.
Empirical system Mapping Mathematical system
Vectors Vector mapping Measurement equation
(A19A2)s (A2>A3)9 (A19A3) Rij:R(AisAj) R(Aia Aj)zu[_uj
Measurement Result mapping Measurement equation
(A4,,4,)=(4,,45) R(A,,4,)=R(4,, 45) Uy — Uy = Uy — Uy

Figure 5 — Empirical measurement model according to S. Stevens [4]

So far, the model for measuring the difference of ~ S. Stevens used this model of measurement to classify
values has been considered. A model for measuring measurement scales [4]. It only remains to add that
the ratio of values can be obtained in a similar way. the Stevens classification also needs to be corrected.
The Stevens model contains two measurement equa- The aim of the work was to develop the theory
tions: for the difference and for the ratio of quantities.  of measurements based on the corrected model of
In the first case, the values are determined on a scale  measurements by S.S. Stevens. This work is a con-
of intervals; in the second case, on a log-interval scale.  tinuation of the work [11-12].
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A critical analysis of the Stevens
measurement model

The four scales were suggested by S.S. Stevens
in 1946. Later, in 1957, S. Stevens added a fifth, the
log-interval scale, but came to the conclusion that
this scale was useless. And the logarithmic scale is no
longer in use today. Stevens’ model corresponds to
the concept of realism. According to J. Michell [13—
14], numbers are ratios between quantities and exist
in space and time. An empirical relational system is
posited as an objective, independently existing struc-
ture able to be numerically represented.

Such an empirical structure was considered
in 1923 by the physicist A. Friedman. Following
A. Friedman, let’s axiomatically define “an excep-
tional group of objects that allows us to make a spe-
cial evaluation”. Let the objects 4,, 4,, 45, ... be
sorted in ascending order of quantity, and the quan-
tity of these objects changes uniformly; u; = u(4,),
where u; is the value of the quantity; the differ-
ences in values (u;,, —u;) are equal to each other:
Uy— Uy =uUs—U,=...=u,—u, .Inaccordance with
the definition of A. Friedman, such a special assess-
ment is called a measurement. Difference values are
defined using equality:

(1

where A, is an unknown constant, A, > 0. The values
u; are determined by a linear transformation, that is,
on the interval scale.

Let v,=v(4;), where v, is the value of the
quantity and the rations of the values are equal:
Vo/v=v3/v,=...=v,/v, . Then the ratios of va-
lues are determined by the formula:

In (vi/v;) =2y (i =), (2)

where A, is an unknown constant, A, > 0. The lo-
garithms of the values are determined up to a li-
near transformation, i. e., on the scale of log-inter-
vals scale. As a result, two measurement equations
are obtained (1) and (2), with two different measure-
ment operations: subtraction and division. Values
are determined on an interval scale and a log-inter-
val scale. S.S. Stevens used a similar measurement
model to classify measurement scales.

The concept of measurement scales looks con-
vincing, and only the “unnecessary” fifth scale
breaks the logic. S.S. Stephens thought a log scale
was mathematically interesting, but it, like many
mathematical models, has proven empirically

u;—u; = A (i =),

useless. Such a claim is controversial. Let’s take an
example of measuring a non-additive quantity. Den-
sity is an example of a non-additive quantity. Let the
density of the two samples be equal to 1 kg/m® and
2 kg/m’. Then the sum of densities is not defined, but
the ratio of densities is defined.

Example. Let the densities of samples 4,, 4,,
A5, A4 and A change uniformly. Density values can
be measured in two ways. 1. The difference between
two density values is calculated by the formula (1)
u;—u; = i —j, where u; are the values that characte-
rize the density; i,j =1, 2, ..., 5; A, = 1. The ratios of
density values satisfy the equality v,,, /v, = 2, where
v, are the density values. To calculate the ratios, use
the formula (v,/ v)) = (2'/2);i,j=1,2, ..., 5.

Density values u; are determined up to a con-
stant factor, while values v; are determined up to an
arbitrary constant. In a particular case, the values are
given in Table 1. The values have a natural inter-
pretation. For example, the third sample (i = 3) has a
density four times greater than the first, or two orders
of magnitude greater than the first.

Table 1

The density values are obtained on the interval
and log-interval scales

Interval scale of “density”
values u;

Log-interval scale of density

25
values v,

2 2% 2% o

The example confirms that if the value of
objects 4,, 4,, ... changes uniformly, it is reasonable
to consider two measurement scales: the intervals
scale and the log-intervals scale (Table 1). Stevens
believed that the scale of logarithmic intervals was
useless [4]. But density is not defined on the scale
of relations since density is a non-additive quantity.
The density is determined on the logarithmic scale
of intervals. Therefore, there is reason to believe that
the Stevens model requires adjustment.

The measurement model (the adjusted
Stevens model)

From equalities (1) and (2), it follows that the
interval scale values and log interval scale values are
interconnected by the formula:

(u;—w) =L In(v;/v)), 3)
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where i, j =1, 2, ..., n; u, and v, are the values of the
quantity; A = A,/A,. It is straightforward to demon-
strate that equality (3) is satisfied for the values u,
and v; in Table 1.

Equality (3) means that the mapping u = In(v)
preserves the measurement operation: the ratio of
values maps to the difference of values. In addition,
for the values u; and v,, there is a one-to-one cor-
respondence between the values of u; and v; using
the mapping u = In(v). The mapping u = In(v) is an
isomorphism of two algebraic structures: the set of
positive integers under the operation of division,
onto the set of real numbers under the operation of
subtraction. As a result, isomorphic structures cannot
be distinguished from one another solely on the basis
of structure; they are equivalent [15].

During the measurement process each pair of
objects is assigned a value (u;,—u;) or (v;/v;). This
means that the result of an empirical measurement is
equal to the result of an arithmetic operation and not
the value of the quantity. To unify the measurement
process, it is convenient to introduce a rating defini-
tion based on equality (3):

R;= A (u;— uj); 4
R;= Ay ln(ui/vj), (5)

where i, j =1, 2, ... n. The quantity values are #; and
v;, v;> 0, and the positive constants are A, A,.

For objects whose quantity changes uniformly,
the rating is determined up to a constant factor A:

Ry =Mi—)). (6)

Such a definition of the rating will be called clas-
sical. The classic definition of rating follows from
the Stevens measurement model. The rating does
not depend on the choice of measurement model (5)
or (6). A direct check shows that the rating values
satisfy the consistency condition:

Rij =Ry + Rkj' (7N

The axiomatic model of measurement includes
the compatibility condition (7) and two measurement
models (4) and (5), where u; and v, are values, and
R; are rating values. Let the values of the quantity
be on the interval scale if they are the solution of
the system of equations (5), and on the logarithmic
scale if they are the solution of the system of equa-
tions (6). The ratio scale is an interval scale modified
to include an inherent zero starting point. The ratio
scale is an auxiliary scale.

As a result, a theoretical measurement model
was obtained, which can be used for both subjective
and objective measurements. For the measurement
models the measurement algorithm is:

1. Select the measurement model (4) or (5).

2.Find the measurement results (u;,—u;) or
i/ v;).

3. Calculate the rating R;;.

4. Check the compatibility conditions (7).

5. Select the measurement equation (4) or (5)
and find the values of the measured quantity.

The values of the quantity are defined in the
scale of intervals if they are the solution of the sys-
tem of equations (5), and in the scale of log-intervals
if they are the solution of the system of equations (5).
The ratio scale is a scale of intervals in which the
zero element, the reference point, is defined. The
ratio scale is an auxiliary scale.

In addition, the measurement model follows the
principles:

1. The principle of reflection. Operations within
the mathematical system are applicable if and only if
they reflect corresponding operations within the em-
pirical system.

2. The principle of equivalence. The interval
scale and the log-interval scale are equivalent.

From the equivalence principle, organically fol-
lows:

1. Fechner’s law in the form of paired compari-
sons [11].

2. Stevens’ law in the form of paired compari-
sons [11].

3. Rasch model [16].

Stevens’ Experimental Law (1947) was proposed
to replace Fechner’s Experimental Law (1848). The
contradiction between the laws of Fechner and Ste-
vens still exists. The proposed model measurement
solves this problem. In addition, the experimental
laws of psychophysics follow from the measurement
model (5) and (6). Thus, the measurement model has
strong empirical support.

An example implementation of a
quantification model

Five samples of the drinks are evaluated by
seven experienced experts (ISO 11056). Drinks con-
tain different amounts of caffeine. Let 4; be a cof-
fee brand, & be the expert’s serial number, and u,; be
assessments of the coffee brand. Table 2 shows the
assessments of brands, u;.
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Table 2
Data related to the five samples
Vii 4, 4, A; A, As
1 10 20 35 40 70
2 20 38 44 85
3 20 36 40 75
4 15 32 37 70
5 12 25 38 40 75
6 12 22 35 40 80
7 9 18 35 40 84

The values were assigned based on the relation;
if an attribute is twice as intense, it has been assigned
a value twice as high. The assessment can be con-
sidered as a measurement on the log interval scale.
Individual 7, ratings for each expert are calculated
using the formula r; = In(v,./v,).

Table 3
Individual rating values

Vii 4, 4, A5 A, As

1 0.00 0.69 1.25 1.39 1.95
2 0.00 0.92 1.56 1.70 2.36
3 0.00 0.92 1.50 1.61 2.24
4 0.00 0.76 1.52 1.67 2.30
5 0.00 0.73 1.15 1.20 1.83
7 0.00 0.61 1.07 1.20 1.90

The group rating R (Table 4) is calculated as the
average of individual ratings (see Table 3) for each
brand of coffee. A criterion for the consistency of ex-
pert assessments is proposed: the significance of the
correlation coefficients p, p, = p(7;, R). Correlation
coefficients according to Student’s t-test are signifi-
cant with a significance level of 0.05. Therefore, the
hypothesis of the consistency of expert assessments
is accepted.

Table 4
Group assessment of the rating
A A, A4, A, A, A
R 0.00 0.76 1.35 1.47 2.10

The rating measurements can be used in demand
forecasting and sales planning models. Suppose that

the expert consistently compares all brands with the
first one. Let p, be the probability of choosing brand
A; in this situation. Then the ratios of probabilities
p;/p, are related to the rating by formula (6), which
we write as:

R, =\n(p,/p,), 3

where A for formula (7) can be found by using
additional information. Formula 7 is the Rasch
model [16].

The example shows that the measurement re-
sults can be interpreted using the rating definition.
In the example under consideration, the scale of log
intervals was chosen based on the recommenda-
tions for conducting such studies. To confirm that
the measurement scale is log-interval, it is necessary
to check (at least partially) the compatibility condi-
tion (3).

Conclusion

The measurement of non-additive quantities is
a problem that was considered in this article. For
example, subjective measurements are measure-
ments of non-additive quantities. The analysis of
modern works on the theory of measurements shows
that this problem is still relevant. These problems
are considered in the works of J. Barzilai and J. Mi-
chel. It has been established that there is no measure-
ment equation in measurement theory that defines
the natural connection between the empirical and
mathematical systems.

The concept of realism has been applied to the
formation of measurement models. In particular, this
means that empirical structures that support measure-
ment must naturally produce real numbers. The rea-
listic principle for obtaining scale values is formed
on the basis of the Stevens model. The Stevens model
is the rationale for the classification of measurement
scales. However, the analysis of the Stevens model
showed that it needs to be refined.

Taking into account the concept of realism,
a model of quantitative measurement is proposed.
This model was used by S.S. Stevens for the clas-
sification of measurement scales.

The model includes two measurement opera-
tions. The result of a measurement operation is a dif-
ference or ratio of values. The definition of the rating
allows you to consider both measurement operations
at the same time. The rating is a generalized result
of the measurement, which does not depend on the
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choice of the measurement operation. The assump-
tion that both measurement operations can be used
together to measure the same quantity is substan-
tiated. Moreover, the measurement results in this
case are equivalent. On this basis, the principle of
equivalence is formulated.

An algorithm for quantitative measurement is
formulated, as well as a reflection principle that en-
sures the correspondence between the empirical and
mathematical systems.

The proposed model of measurement has con-
vincing experimental confirmation. The model eli-
minated the contradiction between the empirical
laws of Fechner and Stevens. It is shown that they
are equivalent.

The definition of the measurement equation is
given. The measurement equation maps an empiri-
cal system into a mathematical system. From the
measurement equation follows the definition of the
measurement scale. In general, the concept of mea-
surement has been formed, which considers subjec-
tive and objective measurements from a single point
of view.

An example of the application of the measure-
ment model is given. It is shown that an extended
analysis of expert assessments can be performed
using a measurement model. Such an analysis can be
used to solve the problem of forecasting supply and
demand in the economy.
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