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Abstract

Solving the problems of spectral processing of single and quasi-periodic signals in measurement and
diagnostic systems is directly related to their isolation against the background of external interference or
noise. The purpose of this work was to study single and quasi-periodic signals, i. €. signals limited in time,
presented as separate components; development of a mathematical apparatus that connects the individual
components of the original, time-limited signal, with the spectral characteristics of the periodic signal, which
is obtained from the original by its periodization.

The paper analyzes the spectrum of a quasi-periodic signal, which is presented from spectral density
regions separated by spectral components with zero amplitude. The process of signal periodization is con-
sidered on the example of unipolar rectangular pulses. The representation of the analyzed complex single
signal in the form of a linear combination of given functions, limited in time by the duration of the consi-
dered signal, was chosen, and it was determined that it is most logical and efficient to use radio-frequency
pulses. The spectral density of the signal under consideration is presented as the sum of the spectral densities
of radio-frequency pulses of the same width with a varying carrier frequency. The original signal is presented
as the sum of the constituent components (radio-frequency pulses), which form a time-limited frequency
spectrum — a quastr. As a result, the correlation of the considered quasi-periodic signal with the parameters
of the periodic signal (amplitude, period, and initial phase) is shown.

A format for representing time-limited signals in the form of components related to the spectral
characteristics of a periodic signal, obtained from the original signal by periodization, has been developed.
The formed mathematical apparatus allows simplifying the algorithmic support of measuring systems by
eliminating the correlation signal processing.
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CneKTpanbnoe NNpeaACTABJICHUEC UBMEPUTECJIbHBIX OJIHHOYHBIX
N KBAaSUINICPUOAUICCKHUX CUTHAJIOB

FO.B. Cyxoznoios', A.B. Hcaes', A.A. llleiinnkos
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Pemenue 3a1a4 1o CreKTpaibHONH 00paOdOTKE OJUHOYHBIX U KBA3UIICPHOAMYSCKUX CUTHAJIOB B CHCTE-
Max M3MEPEHHs U JMArHOCTUKU HEMOCPEICTBEHHO CBSI3aHHO C MX BbIJCICHHEM Ha (DOHE BHEUIHHX OMEX
M 1rymMoB. Llenbro paboThl SBIISIIOCH MCCIICIOBAHUE OJUHOYHBIX W KBA3UIIEPUOANYSCKUX CUTHAJIOB, T. €.
CUTHAJIOB, OTPAaHUYCHHBIX BO BPEMEHH, MPEACTABICHHBIX B BHJE OTACIbHBIX KOMIIOHEHT;, pa3paboTka
MaTEeMaTUYECKOro arapara, CBSA3bIBAIOIIETO OT/ACAbHBIC KOMIIOHEHTBHI HCXOJHOI0, OIPaHUYEHHOTO
BO BpPEMEHH CHUTHAJA, CO CIEKTPAIbHBIMUA XapaKTEPUCTHUKAMHU IEPUOIMUECKOT0, KOTOPBIA IMOJIy4YCH
M3 UCXOAHOI'0 MyTEM €ro MepUOoU3aIlnH.

B pabGore mnpoBeAéH aHAIM3 CHEKTpPa KBa3UIEPUOIUYECKOIO CHTHAlla, KOTOPBIM IPEACTaBIICH
M3 YYaCcTKOB CIEKTPAJbHOW IIJIOTHOCTH, Pa3leiEHHBIX CHEKTPaIbHBIMH COCTABJISIOIIMMU C HYJICBOM
aMIUTATY 10, PaccMoTpeH mpoliece nmeproau3alii CUrHaaa Ha IPUMEPE OJHOMOJISPHBIX HPSIMOYTOIbHBIX
HUMITYJIbCOB. BBIOpaHO mpeacTaBicHUe aHATM3UPYEMOTO CII0KHOTO OJIMHOYHOTO CHTHAJIA B BUJIC JTMHEHHOM
KOMOMHAIIMH 33J[aHHbIX (DYHKIUI, OrpaHHYEHHBIX 10 BPEMEHHU JUTUTEIbHOCTHIO pACCMATPUBAEMOI'0 CUTHAJIA.
Omnpefienero, 4o Harbosiee JOrudHo U 3((HEKTUBHO B KaUeCTBE JUHEHHON KOMOMHAIIMYU 3aJaHHBIX (YHK-
[MA HUCIOJIB30BaTh PaAMOUMIYJIbChl. IIpencTaBiieHa CHEKTpajibHAs IUIOTHOCTh MCCJICIYeMOIrO CHI'Haja
B BHJIC CYMMbI CIEKTPAJIbHBIX IJIOTHOCTEH PaJHOMMITYJIbCOB TOW K€ JUIMTEIBHOCTH C H3MEHSIOLICHCS
Hecymiel 9acToToil. VICXOMHBIN CUTHAN MPEACTaBICH KaK CyMMa COCTAaBJIIONINX KOMITOHEHT (paIrionM-
MyJICOB), KOTOPbIe ()OPMUPYIOT OTPaHUYCHHBIH BO BPEMEHHM YaCTOTHBINH CHEKTp — KBacTp. B pesynbraTe
MOKa3aHa KOPPEJSIUs PacCMaTPUBAEMOr0 KBA3UIICPUOJAMYCCKOrO0 CHUTHAja C MapamMeTpamMHu IepHO/IH-
YEeCKOro CUrHaja (aMIUIUTY/I0i, IEPUOIOM U HavaabHOH (ha3oii).

Pa3paboran ¢opmar mnpeacTaBiieHUs OIPaHUYEHHBIX BO BPEMEHHM CHUTHAJIOB B BHJEC KOMIIOHEHT,
CBSI3aHHBIX CO CIEKTPAJbHBIMH XapaKTEPUCTUKAMU IEPHOIHMUECKOr0 CHUTHAja, KOTOPBIM IMOJy4YeH
M3 HUCXOAHOTO myTéM ero mnepuoausanud. CHOpMUPOBAHHBI MaTeMaTHYCCKUH armapar IO03BOJISET
YOPOCTHTh aJTOPUTMHUYECKOE 00ECICUeHUE M3MEPHUTEIbHBIX CUCTEM 3a CUET MCKIIIOUYCHHS KOPPEIISIIHOH-
HOM 00pabOTKM cUrHaa.

KimoueBble cioBa: KBaSI/IHCpI/IOI[I/I‘ICCKI/Iﬁ I/ISMCpI/ITGJ'ILHHﬁ CUTHaJI, TapMOHHUYECCKUE COCTaBJIAIOIINEC
CIICKTpa, CIICKTpajibHas IJIOTHOCTD, basuc pas3ioKEeHu.
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Introduction

Measuring signals are the main physical quan-
tities parameters information carriers in measuring
systems. In case of this signal being random, the ag-
gregate of individual instantaneous values of its main
parameter is considered to be information. Pulse
measuring systems most often use the frequency-
domain parameters of the signal. However, the spec-
tral method is used to analyze the measuring signals
most often in both cases.

According to the Fourier transform theory, the
representation of any signal in the frequency domain
is valid only when it meets the Dirichlet conditions,
i. e. the signal must start at infinity and end at infin-
ity, and, therefore, it must be stable over the entire
time interval in which its spectral characteristic will
not be a function of time [1]. This condition is not
feasible for the analysis of real quasi-periodic pro-
cesses and signals. Usually in this case window Fou-
rier transforms [2] or wavelet transforms [3, 4] are
used. However, the wavelet transform theory also
contains a number of simplifications that use ortho-
gonal basis systems, which, in turn, are mathematical
abstractions.

Distortion in the operation of individual ele-
ments of various measuring and diagnostic systems
leads to the formation of additional non-normalized
quasi-periodic signal structures [5]. Therefore, when
developing algorithms to automatically remove in-
terference from a useful signal, the main condition
is to establish an accurate dependence between local
signal disturbances and changes in the values of in-
dividual components of its spectrum. It was shown
in [6] that changes in the values of signal parameters
lead to a significant violation of the initial distribu-
tion of spectral components, some of the latter under-
going more significant changes than others. There-
fore, to increase measurement accuracy one can re-
place the low-sensitivity registration of the signal
temporal parameters changes with the registration
of the characteristic spectral components parameters
changes, the latter being more sensitive to deviations
of the measured parameter and less sensitive to de-
viations that are due to the instability of the elements
in the measuring systems.

Having taken recent development of modern
computing base into account, using a hardware-
mathematical approach to study of quasi-perio-
dic signals is most efficient, since by control-
ling individual parameters of the signal under

study (amplitude, pulse-repetition interval, pulse
duration, and other time parameters), it is pos-
sible to indirectly control the parameters of its
spectrum. One also can distinguish useful signal
from interference using the numbers of the neces-
sary spectral components. In this case to select the
numbers of spectral components with minimum
measuring signal parameters instability sensitivity
one must study the dynamic features of measuring
signal spectrum.

The purpose of this work was to develop a
mathematical apparatus that allows one to represent
single and quasi-periodic time-limited signals as a
set of spectral components, the basis of which are
impulses, parameters of said impulses being deter-
mined by conditional periodization, to provide a uni-
fied approach to describing the spectra of these sig-
nals over finite time intervals.

Main part

Quasi-periodic signals, which occupy an in-
termediate position between periodic and non-pe-
riodic signals, are among the most common signals
used in measurement and diagnostic systems, said
signals reflect the process of transforming spectral
density into a discrete spectrum. Their main feature
is that they are time-limited [7, 8]. Therefore, given
the different approach to describing the spectra of
periodic and non-periodic signals, this creates diffi-
culties when considering quasi-periodic signals. At
the same time, modeling the discrete spectrum for-
mation process from the spectral density provides a
general description for both types of spectra. This
problem can be solved in two ways. The first one
considers the process of a discrete spectrum forma-
tion from the spectral density during signal peri-
odization. However, a spectrum-limited signal is a
signal that is infinite in time. Consequently, when
sampling such a signal, an infinite number of sam-
ples will be obtained. Then, to restore the original
signal (including obtaining its discrete spectrum),
it is necessary to take into account all the rea-
dings, which is impossible due to its unlimited du-
ration [7].

The second method involves obtaining a peri-
odic sequence of signals, which is the sum of in-
dividual signals delayed relative to each other in
time [1]. However, such treatment of a real signal
as a periodic one leads to an error due to the finite
duration of the measurement process. And in this
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case, it is necessary to determine the influence of
the discrete spectrum formation error that depends
on the number of repetitions in the periodization
process. Thus, with an increase in the number of
pulses more and more zeros appear in the spec-
tral density of the signal during periodization [1].
Taking into account that each zero of the spectral
density is at a strictly defined frequency and has
a strictly defined and measurable zero amplitude
at the same time, it can be assumed that it is the
spectral component of the discrete spectrum, which
was formed as a result of full periodization, and
it is a part of a continuous spectrum at the same
time. This representation is the main connecting
component. Therefore, the spectrum of the quasi-
periodic signal itself can be considered combined,
i. e. consisting of spectral density regions sepa-
rated by spectral components with zero amplitude.
For example, consider the process of periodization
of a signal represented as unipolar rectangular pul-
ses (Figure 1).

tirs
U, v
UV d
but |t )
Ua V tw1 fwf t
tits | s tiar| | | D2
UV tr tuz fus twi w1 't
[y | it tﬂl fis2 M:‘ tiaz t"’\?:‘ Liss
tuz fa e - t

Figure 1 — Periodization of rectangular pulses

Let’s set the following conditions:
L =l = Uy = lpp = L = 1

Then, according to [9], the complex spectral
density of such a sequence is defined as the spectral
densities sum of the pulses, that are presented in the
sequence. The equation for the first pulse in the se-
quence can be written as:

Su(w>=n£j<l-e'f‘”’f), (1)

where E is pulse amplitude; ¢, is pulse duration;
o is current frequency of the rectangular pulse se-
quence.

Accordingly, the equation for the second pulse
is:

2

E i
Sia(@)=—(1-¢ 7)o,
%

where #,,, is delay between two pulses.
The expression for the sequence of these two
pulses is:

S (@)= 58, (@)+ 5, (0) = E ey g £ g gronygion -
i 12

3

7.(1 e )1+ o~ /Ohwl ).
Y

According to the displacement theorem [9], for
the second same pair of pulses with numbers 3 and 4,
the equation will look like:

Spa(®) =851 (®) + S ) = n_j(l -e /e ¢

+£ (1 _ e'./mti )e'jwtw2 e'/"""”w‘l —

“

= £(1 S Y1+ e /Ol )e-jmth ,
where ¢, is delay between double pulses.
Then the complex spectral density of the sum of

two identical double pulses has the form:
Sppl (w)= Spl(w) + sz(w) = Tl:_j(l -e /M Y+e S0 )+

+E e eiony1 g o ygrione -
-

(6))

—(1-e/ )1+ e/ 1)1+ e7/72),
T

Transforming this expression, we will have:

Spp] ((D) =

8E

t;

ot o or,, o2 e 2 (6)
(sinT’)(cosTZ‘)(costz)e 2e' 2e 2,

Repeating the resulting impulse combination
after a delay time ¢, ; and taking into account the dis-
placement theorem, we obtain an expression for its
complex amplitude:

S ppa (@) = nﬁj(l - (14 e O (14 M2 ) M3 (7)
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Then the general expression for the complex spectral density of the resulting pulse train will be as fol-
lows:

Sppp1 (@) =S, (@) +S 5 (0) = n_nj(l ~e N1+ /M1 4+ + Tt_j(l - (1414 e 2)e T3 (8)

Transforming this expression, we will have:

/‘0% —/'coth] ~ -mthZ _immtwii

Cl)t“s)e_' e 2e 2e 2. 9

16FE ot ot ot
S ®) = —— (sin—L)(cos—21)(cos —22)(cos
pppl( ) ch ( 2 )( 2 )( B )(

Therefore, the general expression for the spec- An increase in the analysis time in turn leads to the
tral densities modulus of the constructed impulse ar-  additional error appearance, the latter associated

rays can be written as: with the signal under study repetition parameters
2EK . ot K 3 instability.
[S(w)= |sm7 | XP—1| COS_2L b (10) To analyze a single signal, let’s represent it as

a linear combination of given functions, which are
where E is pulse amplitude; 7., is delay between limited in time by the duration of the consi-dered
sets of impulse combinations; ¢, is pulse duration; signal. According to the signal Fourier series ex-
o is current spectral density frequency; K is num-  pansion theory, only signals of infinite duration
ber of consecutive rectangular pulses combina- have physical meaning, which does not reflect

tions. real processes [2]. Thus such a method cannot
Accordingly, the spectral density modulus enve- be used to expand a time-limited quasi-periodic
lope zeros are determined from the expressions: signal. Therefore, when choosing the expansion
of. of basis, it.is most expedi.ent .to represent it as a.se‘.[ of
sin—-=0 and cos—=£ =0. (I harmonic signals, taking into account the limita-
2 2 tions imposed by practice. A solution that satis-
Therefore, fies the requirements is the use of various time-
limited and often encountered in real life signals

®,, :N'znt,s ©g,, :N'%g ; (12)  as a basis. Various types of sequences can serve

1 w
as such signals, the most optimal of them being
where N =1, 2, 3... etc. is zero number. various damped oscillations with fast Fourier se-

From expressions (10), it can be concluded ries convergence. For example, sinusoidal pulses
that with an increase in the number of zeros the with exponentially decaying amplitude, or a limi-
distance between them decreases and the spectral ted spectrum signal of the form sin(w?)/wt, the ge-
density increases in the region of frequencies that neral form and spectral density of which are shown
are multiples of the periodization frequency, and, in Figure 2.
therefore, the components of the expected discrete However, the construction and circuit imple-
spectrum are formed. This suggests that with such  mentation of complex pulse sequences are asso-
a periodization, due to an increase in the number ciated with the introduction of additional errors
of zeros, the process of transformation of the spec-  associated with the limited stability of such cir-
tral density into a discrete spectrum occurs. Ho-  cuits. In addition, on the signal duration limiting
wever, with such a signal analysis, it is impossible  the amplitude-frequency spectrum for a signal in
to determine a discrete spectrum formation end the form sin(wt¢)/m¢, ideally having a finite spec-
time, since with each new periodization step and trum, is strongly distorted, up to the loss of the ad-
regardless of the number of steps, the amplitudes  vantage in limiting the spectrum. Therefore, when
of the spectral components change to indicate that analyzing quasi-periodic sequences, it is most op-
in order to obtain high accuracy, it is necessary timal to use radio pulses, as presented in [10, 11],
to obtain an amplitude-frequency spectrum corre- but it has to be taken into account that generally
sponding to the maximum number of repetitions, the initial phase is not equal to zero inside each
and this leads to an increase in the analysis time. radio pulse.
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puls

the initial phases and amplitudes being obtained as a

resu
odic

radio pulse will then correspond to the frequency of a

Thus, the signal will be decomposed into radio  separate spectral component of the periodized signal.

es with different multiple carrier frequencies [12],

It of the Fourier expansion of the generated peri-

Consequently, the analyzed signal spectral density
will consist of the sum of its constituent radio pulses
spectral densities. Figure 3 shows the decomposition

signal, and the carrier frequency of an individual  of a sequence of bipolar rectangular pulses into time-

limited spectrum components — radio pulses.

Uv f(®)=
’1 _\\ rel. un.
0_6, \\ 1
0.2t \ 2
0 40 86\1_2_(}//1’60 200 240 I 320 360 400 02l
-0.2¢ t, msec :
0 1 2 /oo,
rel. un.
a
Uv
1 S(w).
¥ rel. un.
0.6 o
02 T e
/\\1‘ : 7_"\.: —
0210 80\ ,120. 166 20077240 280 320 360 400
T I, msec
0.6 021
=4 0 1 2 3 o/0,,
rel. un.
b
uv S(e),,
1 rel. un.
0.6
0.2
020 0| [s0| 120] 60| (200 230 280 320 360 400 02
t, msec .
-0.6 0 1 ®/m,
rel. un.
-1
c

Figure 2 — General view and spectral density of signals limited in time: a — sinusoidal signal with exponentially
decaying amplitude; b — signal of the form sin(w?)/w¢; ¢ — radio pulse

Therefore, a time-limited quasi-periodic signal
S(t,,t,) (i.e., a signal existing in the time interval
[¢,,4,]) can be represented as the sum of time-limited
spectral densities ¢.(¢,,,), which are a set of non-
periodic signals (radio pulses) described in the fre-
quency domain by the spectral density [13]:

K
S(tl=t2)=l§OCk¢k (1512), =

where C, is expansion coefficients that determine the
spectrum of a quasi-periodic signal.
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Figure 3 — An example of the spectral density of a quasi-periodic signal and its components: a —a limited pulse
sequence and its spectral density; b, ¢, d — constituent radio pulses and their spectral densities

The result of such an expansion is the total spec-
tral density of the studied pulse sequence shown in
Figure 4. For convenience, it was proposed to name
this kind of expansion a quastr.

At the same time, it should be noted that a
separate component of the quastr has a physical
meaning, since it is essentially a radio pulse with
quite simply measurable parameters. This distin-

guishes it from the representation of the investi-
gated pulse only in the form of spectral density, the
latter having frequency components with infinitely
small amplitudes and continuous frequency com-
ponents. At the same time, the quastr reflects the
real process and corresponds to practice [8, 12].
The components of the quastr (radio pulses) being
not periodic functions, they are described in the
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frequency domain by the spectral density, which
links the quasi-periodic signal to its representation
in the form of a spectral density. In this case, the
spectral density of each component of the quastr,
as well as the spectral density of the other com-
ponents, is distributed over the entire frequency
range, and the value of the spectral signal density
sum of all radio pulses at a certain frequency can
be calculated. Thus, the gain in the transition from
the spectrum to the quastr is associated with the
emerging opportunity to calculate and to measure

the components of a non-periodic signal, and hence
the opportunity to localize errors due to measu-
ring systems individual elements functional pe-
culiarities. This will make it possible to establish
an unambiguous relationship between local signal
variations and changes in its quastr components,
which will allow the development of algorithms for
automatic noise suppression in measuring systems,
express diagnostics of malfunctions in electrical
machines and other electrical equipment using one
or more signals, and so on.

" n,rel.un.

Figure 4 — Volumetric representation of a quasi-periodic signal in the form of a quastr

Let us obtain an expression for the spec-
tral density, presented as the sum of the spectral
densities of its constituent radio pulses. The use
of coherent radio pulses as frequency compo-
nents, as it is shown in [8, 12], does not allow
one to accurately and fully relate the processes
and parameters of the quastr and spectral den-
sity components, i. e. the absence of phase shift
in radio pulses is a special case, and the ge-
neral view of a radio pulses sequence with an arbi-
trary phase delay is shown in Figure 5.

Let’s represent the signal under consideration as
a sum of four separate pulse components:

1. 6 is incomplete pulse period associated with
the phase shift 0;

2.1, 2, ..., mis full periods of the harmonic sig-
nal delayed in time by 7, relative to each other to-
gether with the delay time #y;

3. P is completed half-cycle of the last pulse;

4. P_is incomplete part of the half-cycle of the
last pulse.

1+ Z

B

of
Y

1+

M-

[==}

pt

Figure 5 — Representation of a phase-delayed signal of a
sequence of radio pulses
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Thus, taking into account the phase shift by time According to [1], the spectral density of a sinu-
1o, the presented harmonic signal spectral density soidal pulse is determined by the formula:
will be determined by the expression: f
S () I sin 2 gt (15)
Sc((’o) = Si9(®)+2k IS ((’0)+Slp+ ((D)+Sip—((’0)7 (14) ¢

where Sy(m) is spectral density of a part of the sigis  where #, and ¢, is start and finish times of the impulse
number of complete periods of the harmonic signal;  under consideration; 7, is full period of the signal
S;p+(©) is spectral density of the completed part of  under study; o is current frequency.

the last signal period; S;, (®) is the spectral density Taking into account expression (15), expres-
of the last incomplete pulse. sion (14) will be of the form:
to+mT, 's*”‘T(*T% (m+1)T,
S ()= jE sin 2—t e dt+ J E, sin 2—t e dt+ J E, sin 2—“1 e ™dt+ f E, sin z—nt e dt, (16)
7:.‘ ]; tg+mT, T;‘ T T/ T;
c to+mT.+¢ 03

where £, is amplitude of impulse under consideration.
Or, using the displacement theorem [9]:

"
S.(w)= JE sm(%tj e /dt + j E sm[%t] et + _[ E sm[%tj 0ttt iy

c
/.
H g
N | T R T+%
- J E, s1n(7t g Iotg ) gy
c

0

c c

an

Let us form an expression for each part of the expression (17).
1. The solution of equation for Sy(®) will look like:

I

LN | 2m 2n 2n
(—jo)sin| =1 [—| = |cos| =t
T, T, T, oo || (18)

Sy () = J.Em Sin(z—ntjejwdl =E, 2
T" 0
After a series of transformations and calculations, equation (18) has the following form:
2n
T T .
Se(w)=E, ————|| jo==si 2—nte + cos 2—nt9 e’ 41 (19)
2n 2n T T
o+ =
T

2. Let us write the spectral density of the full pe- S (0)=
riod of the impulse under consideration as the sum 1 n
of t\yo identical pulses, opposite in sign ar}d shifted (2 o o 2
relative to each other by a time 7,, = 7./2 , i. e.. (—jo)sin| ~=t |- 7|08

— 4 c c —joty _— jot
S(®) = S, (O)F S, (o). =| £ 7
— .(D +| —

Then the spectral density of the first positive (=/0) (TLJ .

pulse will have the form:
or
%
o 27
S, (®)= J (- )sm[ZTTE tjef“”ef‘”’edt. (20) T ol
0 c S ((,0) E 7](1)19 ( —e 2 j. (21)
il
o (3]

After integration, expression (20) has the form:
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Then, according to displacement theorem, the The total spectral density of the full periods of
spectral density of the negative half-wave of the first ~ the considered harmonic signal has the form:
pulse, delayed by time ¢,, = 7./2, is determined by 2n
the expression: S (@)= z S, (@) ™" =E T, e x
k=1 2 [ZnJ
2n o+ T
T o ol ~jole ¢ (24)
S, (®)=E,——<——e e’ /Z(l—e g } (22)  omT
l 2, [2m ok Lol )| SIS | jptmeb
[0) — o2 2 2
T x[l e j[1+e j ol e .
sin—<
2
Then the expression for the spectral density 3. Similarly to the previous calculations, let us
of a single period of the radio pulse will have the  define the spectral densities of the considered signal
form: remaining components. The expression for the spec-
tral density of the completed half-cycle of the last
Si(@)=S§, (w)+S,_(0)= pulse has the form:
2n 2n ,
I T —jo—*~ . .
T ol _jek . = e 1= 2 | it ,mjomT,
:Em—cz(l_e 2 )(l+e g Je”‘”". (23) Sp(@)=E, (o) [1 e Je e (29
21 O +| —
o+ (j (TC j
T and for the incomplete one:
2n
P T,
T, . (2n o ) i) ) et
S (0)=E ————|| jo—<sin| =—t¢, |[+cos| —¢, [le ‘? ‘+1|e T2 26
O an[(] oo ) [TD ] -
o +| —
T,
Then the general expression for the spectral density of the considered signal can be represented as:
2n
e ok _ ok sin € NG\ .
S(=E, ———— ([l—e S e (1+e 2 j — 2 " e |4
o +[2ﬂ7 sin 2”
T, (27)

T i T —Jo) L_'e oty rmT.+
+|| jo—=sin Z—Ttte +cos 2—nte e’ +1|+|| jo=<sin 2—nt9 +cos 2—nte e (2 ]+1 e 4)).
o\ T, T, T, T,

It follows from expression (26) that the signal ~Conclusion
spectral density is directly related to the periodic
signal through its main parameters — amplitude at as UEb e X -
(E,), period (T.) and initial phase (Z,), and, there- and quasi-periodic, time-limited signals in the form
fore, to study single and quasi-periodic signals, in- of components that are associated with the spectral
stead of the spectral density, one can use the quastr, characteristics of a periodic signal obtained by pe-
which represents the time-limited amplitude-fre- Tiodization and the development of a mathematical
quency spectrum of the signal. Such a representa- —apparatus for performing these procedures.
tion will simplify the algorithmic support of mea- The presented approach to the analysis of qua-
suring systems by eliminating the correlation signal ~ si-periodic signals makes it possible to simplify the
processing, which requires large computational re-  algorithmic support of measuring systems by elimi-
sources [13]. nating the correlation processing of the signal, which

A format has been developed to represent single
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requires large computational resources. The practi-
cal implementation of the proposed technique will
reduce the measurement time and design parameters
of the measuring systems elements.
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