
Адрес для переписки:
Суходолов Ю.В.
Белорусский национальный технический университет,
пр-т Независимости, 65, г. Минск 220013, Беларусь
e-mail: suhodolov@bntu.by

Address for correspondence:
Suchodolov U.V.
Belarusian National Technical University,
Nezavisimosty Ave., 65, Minsk 220013, Belarus
e-mail: suhodolov@bntu.by

Для цитирования:
U.V. Suchodolov, A.V. Isaev, A.A. Sheinikau.
Dynamic Features of Spectra of Single and Quasi-Periodic  
Measuring Signals.
Приборы и методы измерений.
2022. – Т. 13, № 2. – С. 128–138.
DOI: 10.21122/2220-9506-2022-13-2-128-138

For citation:
U.V. Suchodolov, A.V. Isaev, A.A. Sheinikau.
Dynamic Features of Spectra of Single and Quasi-Periodic  
Measuring Signals.
Devices and Methods of Measurements.
2022, vol. 13, no. 2, рр. 128–138.
DOI: 10.21122/2220-9506-2022-13-2-128-138

Devices and Methods of Measurements
2022, vol. 13, no. 2, pp. 128–138

U.V. Suchodolov et al.

Приборы и методы измерений 
2022. – Т. 13, № 2. – С. 128–138
U.V. Suchodolov et al.

Dynamic Features of Spectra of Single and Quasi-Periodic 
Measuring Signals
U.V. Suchodolov1, A.V. Isaev1, A.A. Sheinikau2 
1Belarusian National Technical University,
Nezavisimosty Ave., 65, Minsk 220013, Belarus
2Military Academy of the Republic Belarus,
Nezavisimosty Ave., 220, Minsk 220057, Belarus

Received 28.01.2022
Accepted for publication 30.05.2022

Abstract 
Solving the problems of spectral processing of single and quasi-periodic signals in measurement and  

diagnostic systems is directly related to their isolation against the background of external interference or 
noise. The purpose of this work was to study single and quasi-periodic signals, i. e. signals limited in time, 
presented as separate components; development of a mathematical apparatus that connects the individual 
components of the original, time-limited signal, with the spectral characteristics of the periodic signal, which 
is obtained from the original by its periodization.

The paper analyzes the spectrum of a quasi-periodic signal, which is presented from spectral density 
regions separated by spectral components with zero amplitude. The process of signal periodization is con-
sidered on the example of unipolar rectangular pulses. The representation of the analyzed complex single 
signal in the form of a linear combination of given functions, limited in time by the duration of the consi-
dered signal, was chosen, and it was determined that it is most logical and efficient to use radio-frequency 
pulses. The spectral density of the signal under consideration is presented as the sum of the spectral densities  
of radio-frequency pulses of the same width with a varying carrier frequency. The original signal is presented 
as the sum of the constituent components (radio-frequency pulses), which form a time-limited frequency 
spectrum – a quastr. As a result, the correlation of the considered quasi-periodic signal with the parameters 
of the periodic signal (amplitude, period, and initial phase) is shown.

A format for representing time-limited signals in the form of components related to the spectral  
characteristics of a periodic signal, obtained from the original signal by periodization, has been developed. 
The formed mathematical apparatus allows simplifying the algorithmic support of measuring systems by 
eliminating the correlation signal processing.
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Решение задач по спектральной обработке одиночных и квазипериодических сигналов в систе-
мах измерения и диагностики непосредственно связанно с их выделением на фоне внешних помех 
или шумов. Целью работы являлось исследование одиночных и квазипериодических сигналов, т. е. 
сигналов, ограниченных во времени, представленных в виде отдельных компонент; разработка 
математического аппарата, связывающего отдельные компоненты исходного, ограниченного  
во времени сигнала, со спектральными характеристиками периодического, который получен  
из исходного путём его периодизации.

В работе проведён анализ спектра квазипериодического сигнала, который представлен 
из участков спектральной плотности, разделённых спектральными составляющими с нулевой 
амплитудой. Рассмотрен процесс периодизации сигнала на примере однополярных прямоугольных 
импульсов. Выбрано представление анализируемого сложного одиночного сигнала в виде линейной 
комбинации заданных функций, ограниченных по времени длительностью рассматриваемого сигнала. 
Определено, что наиболее логично и эффективно в качестве линейной комбинации заданных функ-
ций использовать радиоимпульсы. Представлена спектральная плотность исследуемого сигнала  
в виде суммы спектральных плотностей радиоимпульсов той же длительности с изменяющейся 
несущей частотой. Исходный сигнал представлен как сумма составляющих компонент (радиоим-
пульсов), которые формируют ограниченный во времени частотный спектр – квастр. В результате 
показана корреляция рассматриваемого квазипериодического сигнала с параметрами периоди-
ческого сигнала (амплитудой, периодом и начальной фазой). 

Разработан формат представления ограниченных во времени сигналов в виде компонент, 
связанных со спектральными характеристиками периодического сигнала, который получен  
из исходного путём его периодизации. Сформированный математический аппарат позволяет 
упростить алгоритмическое обеспечение измерительных систем за счёт исключения корреляцион-
ной обработки сигнала.

Ключевые слова: квазипериодический измерительный сигнал, гармонические составляющие  
спектра, спектральная плотность, базис разложения.
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Introduction

Measuring signals are the main physical quan-
tities parameters information carriers in measuring 
systems. In case of this signal being random, the ag-
gregate of individual instantaneous values of its main 
parameter is considered to be information. Pulse 
measuring systems most often use the frequency-
domain parameters of the signal. However, the spec-
tral method is used to analyze the measuring signals 
most often in both cases.

According to the Fourier transform theory, the 
representation of any signal in the frequency domain 
is valid only when it meets the Dirichlet conditions, 
i. e. the signal must start at infinity and end at infin-
ity, and, therefore, it must be stable over the entire 
time interval in which its spectral characteristic will 
not be a function of time [1]. This condition is not 
feasible for the analysis of real quasi-periodic pro-
cesses and signals. Usually in this case window Fou-
rier transforms [2] or wavelet transforms [3, 4] are 
used. However, the wavelet transform theory also 
contains a number of simplifications that use ortho-
gonal basis systems, which, in turn, are mathematical 
abstractions.

Distortion in the operation of individual ele-
ments of various measuring and diagnostic systems 
leads to the formation of additional non-normalized 
quasi-periodic signal structures [5]. Therefore, when 
developing algorithms to automatically remove in-
terference from a useful signal, the main condition 
is to establish an accurate dependence between local 
signal disturbances and changes in the values of in-
dividual components of its spectrum. It was shown 
in [6] that changes in the values of signal parameters 
lead to a significant violation of the initial distribu-
tion of spectral components, some of the latter under- 
going more significant changes than others. There-
fore, to increase measurement accuracy one can re-
place the low-sensitivity registration of the signal 
temporal parameters changes with the registration 
of the characteristic spectral components parameters 
changes, the latter being more sensitive to deviations 
of the measured parameter and less sensitive to de-
viations that are due to the instability of the elements 
in the measuring systems.

Having taken recent development of modern 
computing base into account, using a hardware-
mathematical approach to study of quasi-perio-
dic signals is most efficient, since by control-
ling individual parameters of the signal under  

study (amplitude, pulse-repetition interval, pulse 
duration, and other time parameters), it is pos-
sible to indirectly control the parameters of its 
spectrum. One also can distinguish useful signal 
from interference using the numbers of the neces-
sary spectral components. In this case to select the 
numbers of spectral components with minimum 
measuring signal parameters instability sensitivity 
one must study the dynamic features of measuring 
signal spectrum.

The purpose of this work was to develop a  
mathematical apparatus that allows one to represent 
single and quasi-periodic time-limited signals as a 
set of spectral components, the basis of which are 
impulses, parameters of said impulses being deter-
mined by conditional periodization, to provide a uni-
fied approach to describing the spectra of these sig-
nals over finite time intervals.

Main part

Quasi-periodic signals, which occupy an in-
termediate position between periodic and non-pe-
riodic signals, are among the most common signals 
used in measurement and diagnostic systems, said 
signals reflect the process of transforming spectral 
density into a discrete spectrum. Their main feature 
is that they are time-limited [7, 8]. Therefore, given 
the different approach to describing the spectra of 
periodic and non-periodic signals, this creates diffi-
culties when considering quasi-periodic signals. At 
the same time, modeling the discrete spectrum for-
mation process from the spectral density provides a 
general description for both types of spectra. This 
problem can be solved in two ways. The first one 
considers the process of a discrete spectrum forma-
tion from the spectral density during signal peri-
odization. However, a spectrum-limited signal is a 
signal that is infinite in time. Consequently, when 
sampling such a signal, an infinite number of sam-
ples will be obtained. Then, to restore the original 
signal (including obtaining its discrete spectrum), 
it is necessary to take into account all the rea- 
dings, which is impossible due to its unlimited du-
ration [7]. 

The second method involves obtaining a peri-
odic sequence of signals, which is the sum of in-
dividual signals delayed relative to each other in 
time [1]. However, such treatment of a real signal 
as a periodic one leads to an error due to the finite 
duration of the measurement process. And in this 
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case, it is necessary to determine the influence of 
the discrete spectrum formation error that depends 
on the number of repetitions in the periodization 
process. Thus, with an increase in the number of 
pulses more and more zeros appear in the spec-
tral density of the signal during periodization [1]. 
Taking into account that each zero of the spectral 
density is at a strictly defined frequency and has 
a strictly defined and measurable zero amplitude 
at the same time, it can be assumed that it is the 
spectral component of the discrete spectrum, which 
was formed as a result of full periodization, and 
it is a part of a continuous spectrum at the same 
time. This representation is the main connecting 
component. Therefore, the spectrum of the quasi-
periodic signal itself can be considered combined, 
i. e. consisting of spectral density regions sepa-
rated by spectral components with zero amplitude. 
For example, consider the process of periodization 
of a signal represented as unipolar rectangular pul- 
ses (Figure 1).

Figure 1 – Periodization of rectangular pulses

Letʼs set the following conditions:

ti11 = ti12 = ti21 = ti22 = tiхх = ti .

Then, according to [9], the complex spectral 
density of such a sequence is defined as the spectral 
densities sum of the pulses, that are presented in the 
sequence. The equation for the first pulse in the se-
quence can be written as:

where E is pulse amplitude; ti is pulse duration;  
ω is current frequency of the rectangular pulse se-
quence.

Accordingly, the equation for the second pulse 
is: 

where tw1 is delay between two pulses.
The expression for the sequence of these two 

pulses is: 

According to the displacement theorem [9], for 
the second same pair of pulses with numbers 3 and 4, 
the equation will look like:

where tw2 is delay between double pulses.
Then the complex spectral density of the sum of 

two identical double pulses has the form:

Transforming this expression, we will have:

Repeating the resulting impulse combination 
after a delay time tw3 and taking into account the dis-
placement theorem, we obtain an expression for its 
complex amplitude:
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Therefore, the general expression for the spec-
tral densities modulus of the constructed impulse ar-
rays can be written as:

where E is pulse amplitude; tzL is delay between 
sets of impulse combinations; ti is pulse duration; 
ω is current spectral density frequency; K is num-
ber of consecutive rectangular pulses combina-
tions.

Accordingly, the spectral density modulus enve-
lope zeros are determined from the expressions:

Therefore,

where N = 1, 2, 3... etc. is zero number.
From expressions (10), it can be concluded 

that with an increase in the number of zeros the 
distance between them decreases and the spectral 
density increases in the region of frequencies that 
are multiples of the periodization frequency, and, 
therefore, the components of the expected discrete 
spectrum are formed. This suggests that with such 
a periodization, due to an increase in the number 
of zeros, the process of transformation of the spec-
tral density into a discrete spectrum occurs. Ho-
wever, with such a signal analysis, it is impossible 
to determine a discrete spectrum formation end 
time, since with each new periodization step and 
regardless of the number of steps, the amplitudes 
of the spectral components change to indicate that 
in order to obtain high accuracy, it is necessary 
to obtain an amplitude-frequency spectrum corre-
sponding to the maximum number of repetitions, 
and this leads to an increase in the analysis time. 

An increase in the analysis time in turn leads to the 
additional error appearance, the latter associated 
with the signal under study repetition parameters 
instability.

To analyze a single signal, let’s represent it as 
a linear combination of given functions, which are 
limited in time by the duration of the consi-dered 
signal. According to the signal Fourier series ex-
pansion theory, only signals of infinite duration 
have physical meaning, which does not reflect 
real processes [2]. Thus such a method cannot 
be used to expand a time-limited quasi-periodic 
signal. Therefore, when choosing the expansion 
basis, it is most expedient to represent it as a set of 
harmonic signals, taking into account the limita-
tions imposed by practice. A solution that satis-
fies the requirements is the use of various time-
limited and often encountered in real life signals 
as a basis. Various types of sequences can serve 
as such signals, the most optimal of them being 
various damped oscillations with fast Fourier se-
ries convergence. For example, sinusoidal pulses 
with exponentially decaying amplitude, or a limi-
ted spectrum signal of the form sin(ωt )/ωt, the ge- 
neral form and spectral density of which are shown 
in Figure 2.

However, the construction and circuit imple-
mentation of complex pulse sequences are asso-
ciated with the introduction of additional errors 
associated with the limited stability of such cir-
cuits. In addition, on the signal duration limiting 
the amplitude-frequency spectrum for a signal in 
the form sin(ωt ) /ωt , ideally having a finite spec-
trum, is strongly distorted, up to the loss of the ad-
vantage in limiting the spectrum. Therefore, when 
analyzing quasi-periodic sequences, it is most op-
timal to use radio pulses, as presented in [10, 11], 
but it has to be taken into account that generally 
the initial phase is not equal to zero inside each 
radio pulse.
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Then the general expression for the complex spectral density of the resulting pulse train will be as fol-
lows:
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Thus, the signal will be decomposed into radio 
pulses with different multiple carrier frequencies [12], 
the initial phases and amplitudes being obtained as a 
result of the Fourier expansion of the generated peri-
odic signal, and the carrier frequency of an individual 
radio pulse will then correspond to the frequency of a 

separate spectral component of the periodized signal. 
Consequently, the analyzed signal spectral density 
will consist of the sum of its constituent radio pulses 
spectral densities. Figure 3 shows the decomposition 
of a sequence of bipolar rectangular pulses into time-
limited spectrum components – radio pulses.

а

b

c

Figure 2 – General view and spectral density of signals limited in time: a – sinusoidal signal with exponentially  
decaying amplitude; b – signal of the form sin(ωt )/ωt ; c – radio pulse

Therefore, a time-limited quasi-periodic signal 
S (t1 , t2 ) (i. e., a signal existing in the time interval 
[t1 , t2] ) can be represented as the sum of time-limited 
spectral densities φk (t1 , t2 ) , which are a set of non-
periodic signals (radio pulses) described in the fre-
quency domain by the spectral density [13]:

where Сk is expansion coefficients that determine the 
spectrum of a quasi-periodic signal.

S t t C t tk k
k

K

1 2 1 2
0

, , ,( ) = ( )
=
∑ φ (13)
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The result of such an expansion is the total spec-
tral density of the studied pulse sequence shown in 
Figure 4. For convenience, it was proposed to name 
this kind of expansion a quastr.

At the same time, it should be noted that a 
separate component of the quastr has a physical 
meaning, since it is essentially a radio pulse with 
quite simply measurable parameters. This distin-

guishes it from the representation of the investi-
gated pulse only in the form of spectral density, the 
latter having frequency components with infinitely 
small amplitudes and continuous frequency com-
ponents. At the same time, the quastr reflects the 
real process and corresponds to practice [8, 12]. 
The components of the quastr (radio pulses) being 
not periodic functions, they are described in the 

а

b

c

d

Figure 3 – An example of the spectral density of a quasi-periodic signal and its components: a – a limited pulse  
sequence and its spectral density; b, c, d – constituent radio pulses and their spectral densities
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frequency domain by the spectral density, which 
links the quasi-periodic signal to its representation 
in the form of a spectral density. In this case, the 
spectral density of each component of the quastr, 
as well as the spectral density of the other com-
ponents, is distributed over the entire frequency 
range, and the value of the spectral signal density 
sum of all radio pulses at a certain frequency can 
be calculated. Thus, the gain in the transition from 
the spectrum to the quastr is associated with the 
emerging opportunity to calculate and to measure 

the components of a non-periodic signal, and hence 
the opportunity to localize errors due to measu- 
ring systems individual elements functional pe-
culiarities. This will make it possible to establish 
an unambiguous relationship between local signal 
variations and changes in its quastr components, 
which will allow the development of algorithms for 
automatic noise suppression in measuring systems, 
express diagnostics of malfunctions in electrical 
machines and other electrical equipment using one 
or more signals, and so on. 

Figure 4 – Volumetric representation of a quasi-periodic signal in the form of a quastr

Let us obtain an expression for the spec-
tral density, presented as the sum of the spectral 
densities of its constituent radio pulses. The use 
of coherent radio pulses as frequency compo-
nents, as it is shown in [8, 12], does not allow 
one to accurately and fully relate the processes 
and parameters of the quastr and spectral den-
sity components, i. e. the absence of phase shift 
in radio pulses is a special case, and the ge- 
neral view of a radio pulses sequence with an arbi-
trary phase delay is shown in Figure 5.

Letʼs represent the signal under consideration as 
a sum of four separate pulse components: 

1. θ is incomplete pulse period associated with 
the phase shift θ; 

2. 1, 2, ... , m is full periods of the harmonic sig-
nal delayed in time by Tc relative to each other to-
gether with the delay time tθ ; 

3. P+ is completed half-cycle of the last pulse; 
4. P– is incomplete part of the half-cycle of the 

last pulse.
Figure 5 – Representation of a phase-delayed signal of a 
sequence of radio pulses
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where Em is amplitude of impulse under consideration. 
Or, using the displacement theorem [9]:
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Thus, taking into account the phase shift by time 
tϴ , the presented harmonic signal spectral density 
will be determined by the expression:

where Sθ (ω) is spectral density of a part of the sig is 
number of complete periods of the harmonic signal;   
Sip+ (ω) is spectral density of the completed part of 
the last signal period; Sip– (ω) is the spectral density 
of the last incomplete pulse.

According to [1], the spectral density of a sinu-
soidal pulse is determined by the formula:

where t1 and t2 is start and finish times of the impulse 
under consideration; Tc is full period of the signal 
under study; ω is current frequency.

Taking into account expression (15), expres-
sion (14) will be of the form:

After a series of transformations and calculations, equation (18) has the following form:
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Let us form an expression for each part of the expression (17).
1. The solution of equation for Sθ (ω) will look like: 

2. Let us write the spectral density of the full pe-
riod of the impulse under consideration as the sum 
of two identical pulses, opposite in sign and shifted 
relative to each other by a time tw1 = Tc /2 , i. e.:

Si (ω) = Si+ (ω)+ Si –(ω).

Then the spectral density of the first positive 
pulse will have the form:

After integration, expression (20) has the form:
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Then, according to displacement theorem, the 
spectral density of the negative half-wave of the first 
pulse, delayed by time tw1 = Tc /2 , is determined by 
the expression:

Then the expression for the spectral density 
of a single period of the radio pulse will have the 
form:

The total spectral density of the full periods of 
the considered harmonic signal has the form:

3. Similarly to the previous calculations, let us 
define the spectral densities of the considered signal 
remaining components. The expression for the spec-
tral density of the completed half-cycle of the last 
pulse has the form:

and for the incomplete one:

S E T

T

e e ei m
c

c

j t j T j
T

c c

1

2

2
1

2
2

2 2
−

− − −
=

+






−






( ) .ω

π

ω π
ω ω ω

θ (22)

S S S

E T

T

e

i i i

m
c

c

j
Tc

( ) ( ) ( )ω ω ω

π

ω π

ω

= + =

=

+






−






+ −

−

1 1

2

2
1

2
2

2 11 2+






− −e e
j

T
j t

cω ω θ . (23) S E T

T

e e eP m
c

c

j
T

j t j mT
c

c
+

− − −=

+






−






( ) ,ω

π

ω π

ω ω ωθ

2

2
1

2
2

2 (25)

(26)S E T

T

j T
T

t
T

tp m
c

c

c

c c
− =

+












+( ) sin cosω

π

ω π
ω

π
π π

θ θ

2

2 2
2 2

2
2













+











− −



 − + +e e

j
T

t j t mT Tc
c

cω ωθ
θ2 21 ( ).

S S e E T

T

e

e

i i
k

m
j kT

m
c

c

j t

j

k

c( ) ( )ω ω

π

ω π
ω ω θ= =

+






×

× −

=

− −

−

∑
1 2

2

2

2

1
ωω ω ω

ω

ω

T
j

T
c

c

j
mc c

e

mT

T e2 21 2

2







+






















− −
−sin

sin

( 11
2

)

.
Tc

(24)

S E T

T

e e em
c

c

j
T

j t j
Tc c

( ) (ω

π

ω π

ω ω ω
θ=

+






−






+



− − −

2

2
1 1

2
2

2 2





















+













−
−

−
sin

sin

( )
ω

ω
ω ω

mT

T e e
c

c

j
m T

j mT
c

c2

2

1
2 


+

+






+












+




−j T

T
t

T
t ec

c c

j tω
π

π π
θ θ

ω θ

2
2 2 1sin cos




 +







+












− −

j T
T

t
T

t ec

c c

j
T

tc

ω
π

π π
θ θ

ω

2
2 2 2sin cos

θθ
θω





 − + ++









1 2e j t mT T

c
c( ) ).

(27)

Then the general expression for the spectral density of the considered signal can be represented as:

It follows from expression (26) that the signal 
spectral density is directly related to the periodic 
signal through its main parameters – amplitude 
(Em ), period (Tc ) and initial phase ( tθ ), and, there-
fore, to study single and quasi-periodic signals, in-
stead of the spectral density, one can use the quastr, 
which represents the time-limited amplitude-fre-
quency spectrum of the signal. Such a representa-
tion will simplify the algorithmic support of mea-
suring systems by eliminating the correlation signal 
processing, which requires large computational re-
sources [13].

Conclusion

A format has been developed to represent single 
and quasi-periodic, time-limited signals in the form 
of components that are associated with the spectral 
characteristics of a periodic signal obtained by pe-
riodization and the development of a mathematical 
apparatus for performing these procedures.

The presented approach to the analysis of qua-
si-periodic signals makes it possible to simplify the 
algorithmic support of measuring systems by elimi-
nating the correlation processing of the signal, which 
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requires large computational resources. The practi-
cal implementation of the proposed technique will 
reduce the measurement time and design parameters 
of the measuring systems elements.
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