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Abstract

The method of averaging modified periodograms is one of the main methods for estimating the power
spectral density (PSD). The aim of this work was the development of mathematical and algorithmic support,
which can increase the computational efficiency of signals digital spectral analysis by this method.

The solution to this problem is based on the use of binary-sign stochastic quantization for converting
the analyzed signal into a digital code. A special feature of this quantization is the use of a randomizing
uniformly distributed auxiliary signal as a stochastic continuous quantization threshold (threshold function).
Taking into account the theory of discrete-event modeling the result of binary-sign quantization is interpreted
as a chronological sequence of instantaneous events in which its values change. In accordance with this we
have a set of time samples that uniquely determine the result of binary-sign quantization in discrete-time
form. Discrete-event modeling made it possible to discretize the process of calculating PSD estimates. As
a result, the calculation of PSD estimates was reduced to discrete processing of the cosine and sine Fourier
transforms for window functions. These Fourier transforms are calculated analytically based on the applied
window functions. The obtained mathematical equations for calculating the PSD estimates practically do not
require multiplication operations. The main operations of these equations are addition and subtraction. As a
consequence, the time spent on digital spectral analysis of signals is reduced.

Numerical experiments have shown that the developed mathematical and algorithmic support allows
us to calculate the PSD estimates by the method of averaging modified periodograms with a high frequency
resolution and accuracy even for a sufficiently low signal-to-noise ratio. This result is especially important
for spectral analysis of broadband signals.

The developed software module is a problem-oriented component that can be used as part of metrologically
significant software for the operational analysis of complex signals.

Keywords: spectral analysis, Fourier transform, modified periodogram method, binary stochastic quanti-
zation, fast algorithms.
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HudpoBoii cieKTPaJIbHBIA AHAJIU3 METOA0M YCPeTHEHHBIX
MOAUGPUIIMPOBAHHBIX IEPUOAOTPAMM C NIPUMEHECHHUEM
OMHAPHO-3HAKOBOI'0 CTOXACTHYECKOI0 KBAHTOBAHUS
CUTHAJIOB

B.H. SIxumoB

Camapckuii 2ocyoapcmeenHblil mexHudecKull yHugepcumen,
vi. Monoooesapoetickas, 244, . Camapa 443100, Poccus

Tocmynuna 24.06.2021
Ipunama k neuamu 10.09.2021

Merton ycpenHEHHBIX MOAN(MUIIMPOBAHHBIX TEPHONOTPAMM SIBISIETCS OJHUM M3 OCHOBHBIX METOJIOB
OIIEHHWBAHUS CIIEKTpaibHOM TNIOTHOCTH MottHOCTH (CIIM). Llenbio paGoTs sSiBIsIach pa3padoTka MaTeMaTH-
YEeCKOTO U allTOPUTMUYECKOT0 00eCTIeYeHus], KOTOPhIE MO3BOJISIFOT MOBBICUTH BBIYUCIUTENBHYIO d(D()EKTHB-
HOCTH LM(POBOTO CIEKTPATLHOTO aHAJIN3a CUTHAJIOB THM METOOM.

Permenue nocrapieHHOM 3a7a41 OCHOBAHO Ha UCTIONb30BaHNH OMHAPHO-3HAKOBOTO CTOXACTHUECKOTO KBaH-
TOBAHUS JJIS1 IPEOOPA30BAHNS AaHATTU3UPYEMOTO CUTHaAIA B mu(ppoBoit koa. OCOOCHHOCTHIO TAKOTO KBAHTOBA-
HUS SBJIAETCS IPUMEHEHNE PaHI0MU3HPYIOIIEro paBHOMEPHO paclpeIeIEHHOTO BCIIOMOTaTeIbHOTO CUTHAJIA B
Ka4eCTBE CTOXaCTHUYECKOTO HEMPEPBIBHOTO MTOPOTa KBAaHTOBaHUSI (1MOpOoroBoi ¢yHkin#). C y4EToM TeOpru JInc-
KpPETHO-COOBITUHHOTO MOJETUPOBAHUS pe3yabTar OWHAPHO-3HAKOBOTO KBAaHTOBAHUS WHTEPIPETHUPYETCS KaK
XPOHOJIOTHYECKas MOCIIeIOBATEIbHOCTh MTHOBEHHBIX COOBITHI, B KOTOPBIE IIPOMCXOIUT CMEHA €T0 3HAYCHUI.
B cooTBeTCTBHM C 3TUM, IMEEM MHOXKECTBO OTCUETOB BPEMEHH, KOTOPBIE OIHO3HAYHO ONPEEISIOT pe3ylbTaT
OWHAPHO-3HAKOBOTO KBAaHTOBAHMS B JIMCKPETHOM BUJIE. JIMCKPETHO-COOBITHIHOE MOJICITUPOBAHUE MTO3BOJIHIIO
OCYITIECTBUTH AUCKPETH3AIHIO Mporiecca BeraucieHus oreHok CIIM. B urore Beraucnenne omnenok CIIM cBe-
JIOCh K TUCKPETHOH 00paboTKe KOCHHYC M CHHYC IpeoOpazoBanuii Dypbe 1iisi OKOHHBIX (QYHKIMH. DTH Tpe-
o0pazoBanusi Dypbe BBIYUCISIOTCS aHATUTHYECKH € YIETOM NPUMEHSIEMBIX OKOHHBIX (QyHKIWA. [Tomy4yeHHbIe
MaTreMaTHYeCKUe COOTHOIIEHUS sl BerurciaeHus oneHok CIIM npakrrdecku He TpeOyIOT BHITIOITHEHHS OTepa-
Ui yMHOKeHUsI. OCHOBHBIMHU OIEpaIisIMHU 3TUX COOTHOIIICHUH ABJISIOTCS ONepalii CIOKEHNS 1 BEIYUTAHUS.
CJeicTBHEM ATOTO SIBISICTCS YMEHBIIICHUE BPEMEHHBIX 3aTpar Ha U(PPOBON CIICKTPaJIbHBIN aHAIIN3 CUTHAJIOB.

UmcrieHHble SKCIIEPUMEHTBI MTOKa3alli, 4To pa3paboTaHHOE MaTeMaTHYeCKOe W alTOPUTMHUIECKOE 00e-
CIIEYCHHUE TI03BOJISIET BBIYUCIIATE olleHKH CITM MeToioM ycpenHEHHBIX MOAN(UITMPOBAHHBIX MEPUOAOTPAMM
C BBICOKMM YaCTOTHBIM Pa3pelieHHeM U TOYHOCTBIO JJasKe JIJIsl IOCTATOYHO HU3KOTO OTHOIICHUS CHUTHAII/IITYM.
Taxoii pe3ynsTaT 0COOCHHO BaskeH /IS CIIEKTPAIbHOTO aHAIN3a ITMPOKOTIOIOCHBIX CUTHAJIOB.

Pa3paboTaHHbI TPOrpaMMHBIA MOIYJIb TPENCTABISET cOO0H MPOOIEMHO-OPUEHTUPOBAHHBIA KOMIIO-
HEHT, KOTOPBIA MOXKET MCITOIB30BAThCS B COCTaBE METPOJIOTMYECKH 3HAYMMOTO POTrPaMMHOTO 00eCTIeYeHHS
JUTSL OTIEPATUBHOTO aHAJIHM3a CJIOKHBIX CUTHAJIOB.

KualoueBble cjioBa: CrHeKTpaibHBIN aHanmu3, mpeoOpasoBanne Dypre, MeTon MOIUDUITIPOBAHHBIX
MeproIorpamMmM, OMHAPHOE CTOXACTUYECKOE KBAaHTOBAHHE, OBICTPBIC aITOPUTMEI.
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Introduction

Spectral analysis is one of the most significant
and applied methods for signal investigation. It
is used in many areas of engineering and physical
sciences. In particular, the spectral estimation of
the frequency composition of signals is of practical
interest in the process of non-destructive testing and
functional diagnostics of technical systems used for
various purposes.

In real life signals are exposed to random
disturbances and noise interference which leads
to their statistical uncertainty. Statistical analysis
methods are used to investigate such noisy signals.
In this case, the spectral analysis of signals will be
associated with the need to obtain a robust estimate
of the power spectral density (PSD).

PSD is a continuous function of frequency and
determines the average power per unit frequency
interval. Estimation of PSD allows us to get an idea
of the distribution of the average signal power in the
monitored frequency range and to identify within this
range the dominant (resonant) frequency components
present in its composition. In practice, the PSD
is estimated based on the calculation of the direct
Fourier transform. Currently, the discrete Fourier
transform is used. This is due to the advantages of
digital signal processing. First of all, such advantages
are the repeatability and reproducibility of digital
measuring procedures [1].

With the advent of powerful computer
technology and as a result of the development of
fast Fourier transform algorithms the periodogram
method for estimating the PSD is widely used.
According to this method, if the signal is stationary
and ergodic in time, then the PSD estimate is
calculated by processing single of its centered
realization using the finite Fourier transform [2, 3].
Centering the signal realization implies preliminary
removal of the constant component, if any. However,
it was shown in [3] that such a periodogram estimate
of the PSD will yield statistically unstable results
of spectral analysis. At the same time, an increase
in the duration of the processed signal realization
does not improve the quality of the PSD estimate.
This only leads to an increase in the number of
frequencies for which the PSD estimate can be
calculated. The smoothing of the PSD estimate
can be obtained by averaging the periodogram
estimates calculated for individual segments of the
signal realization under the assumption that it is
stationary. In this case, the observed realization of

the signal is divided into segments of finite duration,
which form a pseudo-ensemble. Local periodogram
estimates are calculated for these segments. Finally,
the PSD estimate is calculated by averaging the
local periodograms. If the duration of the signal
realization is limited in time, then the formation
of a pseudo-ensemble with partial overlapping of
segments is allowed. This allows you to get more
periodogram local estimates for averaging. In order
to reduce spectral leakage and reduce distortion of
periodogram estimates by strong harmonics, each
segment is processed using windowed weighting
operations. This reduces the level of side lobes in the
spectrum estimate. In addition, the use of windowing
functions gives less weight to the values at the
ends of the segments. As a result, the overlapping
segments are less correlated with each other, which
make it possible to obtain a more effective variance
reduction for averaged periodogram estimates. This
approach to estimating the PSD is known as the
method of averaging modified periodograms [2-5].
The method of averaging modified periodograms
leads to a decrease in the variance of the calculated
PSD estimates. It also allows you to control the level
of the side lobes, which is especially important when
the amplitudes of the harmonics in the signal vary
greatly. However, this method is a complex signal
processing procedure. The need to carry out such
complex signal processing leads to the fact that
classical algorithms implementing this method in
digital form assume the organization of computational
processes that require performing a significant
number of digital multiplication operations. It is
known that it is the multiplication operations that
are the most computationally laborious among all
arithmetic operations [6, 7]. The execution of such
algorithms can lead to significant time costs and
reduce the efficiency of signal processing, even if the
fast Fourier transform is used. The development and
use of increasingly powerful computer technology
cannot solve this problem completely. This is due to
the constant complication of technological processes
for monitoring and diagnosing complex systems
and objects, which leads to the need to analyze
large amounts of data sets. In accordance with the
above, the aim of this work was the development
of mathematical and algorithmic support, which
can increase the computational efficiency of signals
digital spectral analysis by the method of averaging
modified periodograms. It is necessary to note, that
a positive solution to this problem can be obtained
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by reducing the number of digital multiplication
operations.

Estimation of the power spectral density
based on binary-sign stochastic quantization

Currently widely used digital algorithms for
calculating periodogram estimates of PSD are
traditionally developed on the basis of the classical
approach to the discrete-time representation of
signals. According to this approach, analog-to-
digital signal conversion is the result of performing
uniform time sampling, multi-level quantization, and
encoding of the digitized samples. Such analog-to-
digital conversion leads to the necessity of processing
multi-bit samples of digital signals in the process of
spectral analysis. In practice, in order to reduce time
costs, it is necessary to make trade-offs between
the quality of analog-to-digital conversion and the
computational complexity of processing digital
samples. In the extreme case, binary quantization
methods are used to convert signals into a digital
code [8-14].

Randomization (deliberate introduction of ran-
domness) of binary quantization makes it possible
to obtain a rational relationship between an extreme-
ly low number of quantization levels equal to two
and the accuracy characteristics of computational
algorithms in digital signal processing. In the case
of using randomization, we have binary stochastic
quantization. A special case of such quantization
is binary-sign stochastic quantization. The use of
binary-sign stochastic quantization for the statistical
analysis of signals is substantiated in[15]. In
the process of performing such quantization, a
continuous auxiliary random signal is used as a
variable quantization threshold (threshold function).
The auxiliary signal takes on values within the
values range of the analyzed signal and has a uni-
form distribution. The result of the binary-sign
stochastic quantization is:

z(t)=+1,1if ;O)Z&(t); z(t)= -1, if )Oc(t)<i(t), (1)

where fc(t) is a centered signal realization; &(¢) auxi-
liary random signal.

The result of binary-sign stochastic quantization
can only take on the value “-1” or “+1”. The change
of these values occurs sequentially at the moments
of time tl-Z . At the same time, the probability of
simultaneous occurrence of two or more events at the
same time is excluded. Taking this into account, a

mathematical model was obtained for representing
z(#) in discrete form [16]. It is developed based on
the theory of discrete-event modeling. According
to this model, it is enough for us to know only the
initial value of the binary-sign quantization result
z(t,) and the set of time samples tiZ within the time
interval of signal analysis. Based on this model,
the calculation of the periodogram estimate of the
PSD using binary-sign stochastic quantization is
considered in [17, 18]. However, the mathematical
equations obtained in [17] do not provide for the
use of window functions. In [18], the periodogram
estimate of the PSD is calculated using window
functions, but its calculation is carried out indirectly
through the calculation of the correlation function
estimate. This approach to the estimation of PSD
requires the formation of initial data using two
independent procedures of binary-sign stochastic
quantization, which complicates the procedure of
spectral analysis.

Taking into account the results obtained by the
author in [16-18], we consider the application of
binary-sign stochastic quantization for estimating
PSD by the method of averaging modified
periodograms. According to this method, the result
of binary-sign stochastic quantization should be
represented as a pseudo-ensemble of signal segments.
For these segments, local periodogram estimates are
calculated, which are averaged to obtain the desired
PSD estimate.

Figure 1 shows a pseudo-ensemble consisting of
M segments for the result of a binary-sign stochastic
quantization. The duration of each segment is
T=LAT, where L is the number of overlapping
pieces of the segment, and AT is the segment shift.
For the pseudo-ensemble shown in Figure 1 L =2.
If we assume that 7, = 0, then mathematically in time,
the segments can be represented as follows:

z(m,t) = z(t + (m—1)AT), 2)

where 0<¢<Tand 1 <m <M.
The periodogram estimate for the each weighted

segment we will calculate with a frequency resolution
fo =T 'at frequencies f, = kfj:

T 2
[ 2(t+ (m=DAT)w(e)exp(- j2miforyde | (€)
0

éZ
5 , — max
xx (ms fi) ==,
where w(f) is a window function; W characterizes
the average power of the window function and is a
normalizing factor.
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Figure 1 — Segments pseudo-ensemble of the binary-sign stochastic quantization result

The averaged periodogram estimate of the PSD
will be equal to:

Smfk)— 2 Sxx (m, fe)- @)
m 1
We represent (3) in the following form:
Sy (m, fi) = é}nax (e + 0 ) (5)
where
T
d = [ 2(t+(m=DAT)w(r) cos 2mkfdr; (6)
0
R T
B = | 2(t+(m—=1)AT)w(r)sin 2kt 7
0
Let's introduce the functions:
heos (f 51) = w(t) cos 2mft; (®)
hgy (f 1) = w(t)sin 27fi. 9)
Then for (6) and (7) we get:
tmfl+T
ak,m = J‘ 2(Oheos (-t =1y dt; (10)
tm—l
tyy+T
bem= | 2Ohgn (f-t=ty)dt, (11)
tm—l
where )= 0; ¢, = mAT, 1 <m <M.

Taking into account the discrete-event model
developed in[16], any segment z(m,f) can be
represented in a discrete-time form. As a result of
performing binary-sign quantization, we have the
initial value z(#,) and a set of time samples tiZ , In
which ts values change during the analysis
tlme interval 7, where 1 <i</-1, tOZ =1,=0 and
t[ =T, . To uniquely identify a segment z(m, 7) in

time, it is enough to know the set of time samples

t?

7 on the time interval ¢, | <t<(z,

_+7) within

which this segment is defined, and you also
need to know its initial value z(¢, ;). The result
of binary-sign quantization z(f) sequentially
takes on the wvalues “—1” and “+1”. Therefore,
if its initial value z(#,) is known, then the initial
value z(¢,, ;) for the segment z(m, ) can be easily
determined. Based on this, we introduce the notation

z Z
tv(m) =1ty and tv(m)+r(m)+1 =t, 1+T. The sub-

scripts v(m) and r(m) are integers. Such designations
of these indices show their dependence on the
segment number. Then for the segment z(m, ) we
will have the set of time samples:

{ th(m)-H > th(171)+2 """"

At time intervals, the boundaries of which are
determined by the counts (12), the values for z(7)
are equal to “—1” or “+1”. Therefore, the integrals
in (10) and (11) can be represented as a sum of
integrals:
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, Then we get:
r(m) _tv(n7)+j+l ‘3;2
G = Z(t'"_l),go T st =t 03 g g = SRR+ B ) 23)
- Logmy+j
- et Equations (4) and (19)—(23) define a set of
r(m v(m)+j+ . .
~ i 14)  computational procedures and the order of their
by, =z(t -1 h; =t _1)dt. ( p p _
kom = 2(m-1) ng =D 7 J sin (it = tm-1) execution for calculating PSD estimates S yy (f;)

v(m)+j

A window w(#) function is a continuous and
integrable function. Therefore, the functions 4 (/. 1)
and A, (f, ) will also be continuous and integrab-
le with respect to the time variable. Consequently,
there are functions for H_ (f, t) and H,(f, #) which
the differentiability conditions are satisfied:

dH o5 (1, ) = heos (4, /)l
dH g, (8, /) = hgip (2, f)dt.

(15)
(16)

Taking into account (15) and (16), the integrals
in (13) and (14) are calculated analytically:

r(m)

j z
O +2 2, D Heog (fistytmys j ~tm-1)
=

ak,m =Z(tml{ ]’(17)

r(m)

Bewm+2 Y (0 Hon ity ) = tmt)
Jj=1

B =z(rm_1>[ ] (18)

where

e = Heos (fs 0 =D " Heo (T (19)

Biean = Hiin (fi: 0= (=" Hgy (4.7, (20)
According to (5), when calculating the

periodogram estimate of the PSD for the segment
z(m, ), the coefficients estimates (17) and (18) must
be squared. In this case, we get ZZ(H) = 1. It follows
that there is no need to know the initial values z
of the segments. It is enough to have only a set of
time samples tl.Z in which the result of binary-sign
stochastic quantization changes its values in the time
interval of spectral analysis. This greatly simplifies
the computational procedures for estimating the
PSD. With this in mind, it is sufficient to calculate
the estimates of the following form:

_ r(m) ,

A =0 +2 X, (D Hoos Uiestymys j = tm—1): (1)
=

_ r(m) . 5

B m = Bk,m +2 z -1’ Hin (fk’tv(m)+j ~ly-1)- (22)
=

in digital form at discrete frequencies fk = kf,. It
follows from (21) and (22) that the basis of these
procedures are logical operations for organizing the
execution of a sequence of actions and operations for
adding and subtracting function values H_ (/. f) and

Hg(f, 1) for f=kf, andz:tl.z,

Numerical experiments

Based on (4) and (19)—~(23), the author has
developed algorithmic support and software for
calculating the PSD estimate by the method of
averaging modified periodograms. The software is
made in the form of a specialized software module
that can be used as part of a metrologically significant
part of the application software for complex signal
analysis [19]. When conducting spectral analysis of
signals, it should be borne in mind that none of the
existing window functions is universal in its purpose.
The choice of a specific window function is due to
the task and conditions in which the spectral analysis
of signals is carried out. Analysis of frequency and
metrological characteristics of window functions and
recommendations for their application are presented
in [20-22]. In our case, for the selected window
function, it is necessary to have the functions
H_ (f, ) and H(f, {). By definition, these functions
are calculated analytically. Therefore, depending on
which window functions are supposed to be used, a
set of corresponding functions H, (1, ) and H, (f, )
can be pre-formed and arranged in the form of special
collections or libraries of application routines. As an
example, we will consider three widely used window
functions in practice: rectangular (box car) window,
triangular window (Bartlett's) and cosine window.
Below for these window functions are the functions
H, (f, 1) and H (f, t), the values of which for =0
and ¢ = T are shown in Table 1.

1) Rectangular window (box car):

L, [t|=T;
w(t) =
0, [t>T.
sin 2mft cos 2mft
Hcos(fat):W; Hsin(fat):_ an .
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2) Triangular window (Bartlett's): 3) Cosine window:
—m, [tIST; cosn—t, |[tIST;
w(t) = T w(t) = 2T
0, [t>T. 0, [t|>T.
in2nft 1 27ft i - i
Ho (20 :(1_1] sin2mft 1 cos TC]; ; Ho ()= sin 0.5%(41 = fo)t | 51n0.57t(4f+f0)t);
T) 2nf T (2nf) 4/ - fo) T4/ + fo)
t \cos2mft 1 sin2mft cos0.5m(4f — fo)t cos0.5n(4f + f)t)
Hg (f.1)=—|1-— - . Hgp (f,1)=— + .
sin (/-0 [ T] anf T (omf)? ont/0 [ (4 f - /o) 4 f + fo)
Table 1

The values of the functions H_ ( f, t) and H ( f, t) for the rectangular (box car), triangular (Bartlett's)
and cosine windows at =0 and 7 =T, when fk = kf, and f, = T

Window Hcos(fk’ 0) Hcos(fk> T) HSin(fl‘c’ 0) Hsin(.fk’ T)

T T
Rectangular (box car) 0 - -—
21k 27tk
r T
Triangular (Bartlett's) - 2 - 2 - 0
(2mk) (2mk) 2mk
2T 8kT
Cosine 0 —— K 0
n(16k* -1) n(16k* —1)

Investigations of the computational properties of
the developed algorithm for estimating the PSD were
carried out on the basis of planning and carrying out
numerical experiments. For this purpose, sets of
test signal models were used. Each of these models
simulated a noisy implementation of a centered

signal )Oc(t) with a given frequency spectrum structure.
The structural composition of the frequency
spectrum of the signal model was specified using
a combination of summed harmonic components
included in its composition. The frequency values of
the harmonic components were set in relative units
and varied in the range from zero to 0.5. Taking
into account the Nyquist—-Shannon theorem, they
were interpreted as normalized with respect to the
doubled value of the upper limit of the frequency
band that the spectrum is supposed to occupy. The
amplitudes of the harmonic components 4, were
set in the range from zero to one. Random initial
phases ¢, were set in the range from —x to +x using
a generator of evenly distributed numbers. The sum
of the harmonic components was subject to noise.
This was achieved by generating white noise that
had a zero mean value. The dispersion 02 of white
noise was set during the experiment. We considered

the signal-to-noise ratio as the ratio of the power of
each harmonic component to the noise power. This
simulation approach allowed us to investigate the
ability to detect harmonic components in noise.

As an example, let's consider the case when the
signal model contained nine harmonic components.
The numerical values of the frequencies and
amplitudes of these harmonic components are
presented in Table 2.

Table 2
Parameters for harmonic components of the
signal realization model

2

n A, f AT/ 4% .dB
1 0.1 0.1 -20.00

2 0.15 0.12 -16.48

3 0.7 0.15 -3.10

4 1.0 0.2 0.00

5 0.5 0.22 -6.02

6 0.35 0.25 -9.12

7 0.25 0.27 -12.04

8 0.2 0.3 -13.98

9 0.05 0.35 -26.02
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The variance Gg of the additive noise was equal  segments pseudo-ensemble based on them was

to unity. The procedure for obtaining time samples  carried out using discrete-event simulation. The

tiZ of the result of binaryo—sign stochastic quantization = normalized PSD estimates calculated for this signal
for the signal model x(¢) and the formation of a model are shown in Figures 2—4.
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Figure 2 — Normalized power spectral density estimate, rectangular window (box car): a —one segment; b —ten
segments
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Figure 3 — Normalized power spectral density estimate, triangular window (Bartlett's): a —one segment; b —ten
segments
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Figure 4 — Normalized power spectral density estimate, cosine window: a — one segment; b — ten segments
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They were calculated with a resolution of 0.0005
conventional units of the normalized frequency within
the entire analysis range from zero to 0.5. For each of
the three window functions, the PSD estimates were
calculated for one and ten segments. The overlap
of the segments was half their length. For the PSD
estimates calculated for one segment, we observe
the presence of significant fluctuations relative to
the true values of the frequency components. At the
same time, it is difficult for us to identify the presence
of weak harmonic components in the spectrum,
for which the signal-to-noise ratio is rather low. In
particular, the harmonic component with a frequency
of 0.35 and amplitude of 0.05 is masked by noise.
It is clearly seen that an increase in the number of
processed segments leads to an improvement in the
quality of PSD estimates and a decrease in the level
of additive noise. All nine frequency components are
present on the graphs of PSD estimates calculated
for ten segments. The weaker harmonic components
are clearly visible and their position in the spectrum
corresponds to the tabular data. There are no false
spectral lines.

Conclusion

The paper considers the development of
mathematical and algorithmic support that allows
increasing the computational efficiency of estimating
the PSD by the method of averaging modified
periodograms in discrete form. This development
was carried out on the basis of the use of binary-
sign stochastic quantization to obtain the digital code
of the analyzed signal. A discrete-event model is
used to represent the result of binary-sign stochastic
quantization in time. This model allowed us to
reduce the calculation of PSD estimates to discrete
processing of functions that are the result of cosine
and sine Fourier transforms for window functions.
A set of such functions can be formed beforehand,
depending on the window functions used. As a result,
we obtained mathematical equations for calculating
PSD estimates in discrete form, which do not require
performing numerous multiplication operations.
These equations became the basis for the development
of computational algorithms for estimating the
PSD. The main computational operations of the
algorithms are the operations of algebraic addition
and subtraction. The practical implementation of
these algorithms leads to a decrease in computational
and time costs in the process of estimating the PSD.

Numerical experiments were carried out on
the basis of simulation modeling. They showed
that the developed approach to solving the problem
posed provides the estimation of PSD by averaging
modified periodograms with high frequency
resolution. Reliable identification of spectral
components is ensured even in additive noise when
the signal-to-noise ratio is sufficiently low. This
result is especially important for the analysis of
broadband signals.

The practical result was the development of
a problem-oriented software module for spectral
analysis. This module can be used as part of
metrologically significant software for the operational
analysis of complex signals.
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