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Abstract 
The method of averaging modified periodograms is one of the main methods for estimating the power 

spectral density (PSD). The aim of this work was the development of mathematical and algorithmic support, 
which can increase the computational efficiency of signals digital spectral analysis by this method. 

The solution to this problem is based on the use of binary-sign stochastic quantization for converting 
the analyzed signal into a digital code. A special feature of this quantization is the use of a randomizing 
uniformly distributed auxiliary signal as a stochastic continuous quantization threshold (threshold function). 
Taking into account the theory of discrete-event modeling the result of binary-sign quantization is interpreted 
as a chronological sequence of instantaneous events in which its values change. In accordance with this we 
have a set of time samples that uniquely determine the result of binary-sign quantization in discrete-time 
form. Discrete-event modeling made it possible to discretize the process of calculating PSD estimates. As 
a result, the calculation of PSD estimates was reduced to discrete processing of the cosine and sine Fourier 
transforms for window functions. These Fourier transforms are calculated analytically based on the applied 
window functions. The obtained mathematical equations for calculating the PSD estimates practically do not 
require multiplication operations. The main operations of these equations are addition and subtraction. As a 
consequence, the time spent on digital spectral analysis of signals is reduced. 

Numerical experiments have shown that the developed mathematical and algorithmic support allows 
us to calculate the PSD estimates by the method of averaging modified periodograms with a high frequency 
resolution and accuracy even for a sufficiently low signal-to-noise ratio. This result is especially important 
for spectral analysis of broadband signals. 

The developed software module is a problem-oriented component that can be used as part of metrologically 
significant software for the operational analysis of complex signals.

Keywords: spectral analysis, Fourier transform, modified periodogram method, binary stochastic quanti-
zation, fast algorithms.
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Цифровой спектральный анализ методом усреднённых 
модифицированных периодограмм с применением 
бинарно-знакового стохастического квантования 
сигналов
В.Н. Якимов
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Метод усреднённых модифицированных периодограмм является одним из основных методов 
оценивания спектральной плотности мощности (СПМ). Целью работы являлась разработка математи-
ческого и алгоритмического обеспечения, которые позволяют повысить вычислительную эффектив-
ность цифрового спектрального анализа сигналов этим методом. 

Решение поставленной задачи основано на использовании бинарно-знакового стохастического кван-
тования для преобразования анализируемого сигнала в цифровой код. Особенностью такого квантова-
ния является применение рандомизирующего равномерно распределённого вспомогательного сигнала в 
качестве стохастического непрерывного порога квантования (пороговой функции). С учётом теории дис-
кретно-событийного моделирования результат бинарно-знакового квантования интерпретируется как 
хронологическая последовательность мгновенных событий, в которые происходит смена его значений. 
В соответствии с этим, имеем множество отсчётов времени, которые однозначно определяют результат 
бинарно-знакового квантования в дискретном виде. Дискретно-событийное моделирование позволило 
осуществить дискретизацию процесса вычисления оценок СПМ. В итоге вычисление оценок СПМ све-
лось к дискретной обработке косинус и синус преобразований Фурье для оконных функций. Эти пре-
образования Фурье вычисляются аналитически с учётом применяемых оконных функций. Полученные 
математические соотношения для вычисления оценок СПМ практически не требуют выполнения опера-
ций умножения. Основными операциями этих соотношений являются операции сложения и вычитания. 
Следствием этого является уменьшение временных затрат на цифровой спектральный анализ сигналов. 

Численные эксперименты показали, что разработанное математическое и алгоритмическое обе-
спечение позволяет вычислять оценки СПМ методом усреднённых модифицированных периодограмм 
с высоким частотным разрешением и точностью даже для достаточно низкого отношения сигнал/шум. 
Такой результат особенно важен для спектрального анализа широкополосных сигналов. 

Разработанный программный модуль представляет собой проблемно-ориентированный компо-
нент, который может использоваться в составе метрологически значимого программного обеспечения 
для оперативного анализа сложных сигналов.

Ключевые слова: спектральный анализ, преобразование Фурье, метод модифицированных 
периодограмм, бинарное стохастическое квантование, быстрые алгоритмы.
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Introduction

Spectral analysis is one of the most significant 
and applied methods for signal investigation. It 
is used in many areas of engineering and physical 
sciences. In particular, the spectral estimation of 
the frequency composition of signals is of practical 
interest in the process of non-destructive testing and 
functional diagnostics of technical systems used for 
various purposes.

In real life signals are exposed to random 
disturbances and noise interference which leads 
to their statistical uncertainty. Statistical analysis 
methods are used to investigate such noisy signals. 
In this case, the spectral analysis of signals will be 
associated with the need to obtain a robust estimate 
of the power spectral density (PSD).

PSD is a continuous function of frequency and 
determines the average power per unit frequency 
interval. Estimation of PSD allows us to get an idea 
of the distribution of the average signal power in the 
monitored frequency range and to identify within this 
range the dominant (resonant) frequency components 
present in its composition. In practice, the PSD 
is estimated based on the calculation of the direct 
Fourier transform. Currently, the discrete Fourier 
transform is used. This is due to the advantages of 
digital signal processing. First of all, such advantages 
are the repeatability and reproducibility of digital 
measuring procedures [1].

With the advent of powerful computer 
technology and as a result of the development of 
fast Fourier transform algorithms the periodogram 
method for estimating the PSD is widely used. 
According to this method, if the signal is stationary 
and ergodic in time, then the PSD estimate is 
calculated by processing single of its centered 
realization using the finite Fourier transform [2, 3]. 
Centering the signal realization implies preliminary 
removal of the constant component, if any. However, 
it was shown in [3] that such a periodogram estimate 
of the PSD will yield statistically unstable results 
of spectral analysis. At the same time, an increase 
in the duration of the processed signal realization 
does not improve the quality of the PSD estimate. 
This only leads to an increase in the number of 
frequencies for which the PSD estimate can be 
calculated. The smoothing of the PSD estimate 
can be obtained by averaging the periodogram 
estimates calculated for individual segments of the 
signal realization under the assumption that it is 
stationary. In this case, the observed realization of 

the signal is divided into segments of finite duration, 
which form a pseudo-ensemble. Local periodogram 
estimates are calculated for these segments. Finally, 
the PSD estimate is calculated by averaging the 
local periodograms. If the duration of the signal 
realization is limited in time, then the formation 
of a pseudo-ensemble with partial overlapping of 
segments is allowed. This allows you to get more 
periodogram local estimates for averaging. In order 
to reduce spectral leakage and reduce distortion of 
periodogram estimates by strong harmonics, each 
segment is processed using windowed weighting 
operations. This reduces the level of side lobes in the 
spectrum estimate. In addition, the use of windowing 
functions gives less weight to the values at the 
ends of the segments. As a result, the overlapping 
segments are less correlated with each other, which 
make it possible to obtain a more effective variance 
reduction for averaged periodogram estimates. This 
approach to estimating the PSD is known as the 
method of averaging modified periodograms [2–5].

The method of averaging modified periodograms 
leads to a decrease in the variance of the calculated 
PSD estimates. It also allows you to control the level 
of the side lobes, which is especially important when 
the amplitudes of the harmonics in the signal vary 
greatly. However, this method is a complex signal 
processing procedure. The need to carry out such 
complex signal processing leads to the fact that 
classical algorithms implementing this method in 
digital form assume the organization of computational 
processes that require performing a significant 
number of digital multiplication operations. It is 
known that it is the multiplication operations that 
are the most computationally laborious among all 
arithmetic operations [6, 7]. The execution of such 
algorithms can lead to significant time costs and 
reduce the efficiency of signal processing, even if the 
fast Fourier transform is used. The development and 
use of increasingly powerful computer technology 
cannot solve this problem completely. This is due to 
the constant complication of technological processes 
for monitoring and diagnosing complex systems 
and objects, which leads to the need to analyze 
large amounts of data sets. In accordance with the 
above, the aim of this work was the development 
of mathematical and algorithmic support, which 
can increase the computational efficiency of signals 
digital spectral analysis by the method of averaging 
modified periodograms. It is necessary to note, that 
a positive solution to this problem can be obtained 
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by reducing the number of digital multiplication 
operations.

Estimation of the power spectral density 
based on binary-sign stochastic quantization

Currently widely used digital algorithms for 
calculating periodogram estimates of PSD are 
traditionally developed on the basis of the classical 
approach to the discrete-time representation of 
signals. According to this approach, analog-to-
digital signal conversion is the result of performing 
uniform time sampling, multi-level quantization, and 
encoding of the digitized samples. Such analog-to-
digital conversion leads to the necessity of processing 
multi-bit samples of digital signals in the process of 
spectral analysis. In practice, in order to reduce time 
costs, it is necessary to make trade-offs between 
the quality of analog-to-digital conversion and the 
computational complexity of processing digital 
samples. In the extreme case, binary quantization 
methods are used to convert signals into a digital 
code [8–14].

Randomization (deliberate introduction of ran-
domness) of binary quantization makes it possible 
to obtain a rational relationship between an extreme-
ly low number of quantization levels equal to two 
and the accuracy characteristics of computational 
algorithms in digital signal processing. In the case 
of using randomization, we have binary stochastic 
quantization. A special case of such quantization 
is binary-sign stochastic quantization. The use of 
binary-sign stochastic quantization for the statistical 
analysis of signals is substantiated in [15]. In 
the process of performing such quantization, a 
continuous auxiliary random signal is used as a 
variable quantization threshold (threshold function). 
The auxiliary signal takes on values within the 
values range of the analyzed signal and has a uni- 
form distribution. The result of the binary-sign 
stochastic quantization is:

where           is a centered signal realization;          auxi-
liary random signal.

The result of binary-sign stochastic quantization 
can only take on the value ‟-1” or ‟+1”. The change 
of these values occurs sequentially at the moments 
of time    . At the same time, the probability of 
simultaneous occurrence of two or more events at the 
same time is excluded. Taking this into account, a 

mathematical model was obtained for representing   
z(t) in discrete form [16]. It is developed based on 
the theory of discrete-event modeling. According 
to this model, it is enough for us to know only the 
initial value of the binary-sign quantization result 
z(t0 ) and the set of time samples      within the time 
interval of signal analysis. Based on this model, 
the calculation of the periodogram estimate of the 
PSD using binary-sign stochastic quantization is 
considered in [17, 18]. However, the mathematical 
equations obtained in [17] do not provide for the 
use of window functions. In [18], the periodogram 
estimate of the PSD is calculated using window 
functions, but its calculation is carried out indirectly 
through the calculation of the correlation function 
estimate. This approach to the estimation of PSD 
requires the formation of initial data using two 
independent procedures of binary-sign stochastic 
quantization, which complicates the procedure of 
spectral analysis.

Taking into account the results obtained by the 
author in [16–18], we consider the application of 
binary-sign stochastic quantization for estimating 
PSD by the method of averaging modified 
periodograms. According to this method, the result 
of binary-sign stochastic quantization should be 
represented as a pseudo-ensemble of signal segments. 
For these segments, local periodogram estimates are 
calculated, which are averaged to obtain the desired 
PSD estimate.

Figure 1 shows a pseudo-ensemble consisting of 
M segments for the result of a binary-sign stochastic 
quantization. The duration of each segment is 
T = L∆T, where L is the number of overlapping 
pieces of the segment, and ∆T is the segment shift. 
For the pseudo-ensemble shown in Figure 1 L = 2.  
If we assume that t0 = 0, then mathematically in time, 
the segments can be represented as follows:

z(m, t) = z(t + (m–1)∆T), 

where 0 ≤ t ≤ T and 1 ≤ m ≤ M. 
The periodogram estimate for the each weighted 

segment we will calculate with a frequency resolution   
f0 = T  –1at frequencies fk = k f0:

where w(t) is a window function; W characterizes 
the average power of the window function and is a 
normalizing factor.

z t z t( ) = +1, if  ( ) = x t t x t t
o o

( ) ( ); , ( ) ( ),≥ − <ξ ξ1 if   (1)

x t
o

( ) ξ( )t

ti
Z

ti
Z

(2)



S m f
TW

z t m T w t j kf t dtXX k

T
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ξ
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The averaged periodogram estimate of the PSD 
will be equal to:

We represent (3) in the following form:

where 

Let's introduce the functions:

Then for (6) and (7) we get:

where t0 = 0; tm = m∆T; 1 ≤ m ≤ M.

Taking into account the discrete-event model 
developed in [16], any segment z(m, t) can be 
represented in a discrete-time form. As a result of 
performing binary-sign quantization, we have the 
initial value z(t0) and a set of time samples      , in  
which ts values change during the analysis 
time interval TA , where 1 ≤ i ≤ I–1,               and  
            . To uniquely identify a segment z(m, t) in
time, it is enough to know the set of time samples

 on the time interval                           within

which this segment is defined, and you also 
need to know its initial value z(tm–1). The result 
of binary-sign quantization z(t) sequentially 
takes on the values ‟–1” and ‟+1”. Therefore, 
if its initial value z(t0) is known, then the initial 
value z(tm–1) for the segment z(m, t) can be easily 
determined. Based on this, we introduce the notation         
                                                                 The sub-

scripts v(m) and r(m) are integers. Such designations 
of these indices show their dependence on the 
segment number. Then for the segment z(m, t) we 
will have the set of time samples:

At time intervals, the boundaries of which are 
determined by the counts (12), the values for z(t) 
are equal to ‟–1” or ‟+1”. Therefore, the integrals 
in (10) and (11) can be represented as a sum of 
integrals:

(4)

Figure 1 – Segments pseudo-ensemble of the binary-sign stochastic quantization result
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A window w(t) function is a continuous and 
integrable function. Therefore, the functions hcos(  f, t)  
and hsin(  f, t) will also be continuous and integrab- 
le with respect to the time variable. Consequently, 
there are functions for Hcos(  f, t) and Hsin(  f, t) which 
the differentiability conditions are satisfied:

Taking into account (15) and (16), the integrals 
in (13) and (14) are calculated analytically:

where

According to (5), when calculating the 
periodogram estimate of the PSD for the segment 
z(m, t), the coefficients estimates (17) and (18) must 
be squared. In this case, we get z2

(t–1) = 1. It follows 
that there is no need to know the initial values z(t–1) 
of the segments. It is enough to have only a set of 
time samples   in which the result of binary-sign 
stochastic quantization changes its values in the time 
interval of spectral analysis. This greatly simplifies 
the computational procedures for estimating the 
PSD. With this in mind, it is sufficient to calculate 
the estimates of the following form:

Then we get:

Equations (4) and (19)–(23) define a set of 
computational procedures and the order of their 
execution for calculating PSD estimates 
in digital form at discrete frequencies fk = k f0. It 
follows from (21) and (22) that the basis of these 
procedures are logical operations for organizing the 
execution of a sequence of actions and operations for 
adding and subtracting function values Hcos(  f, t) and   
Hsin(  f, t) for f = kf0 and   .

Numerical experiments

Based on (4) and (19)–(23), the author has 
developed algorithmic support and software for 
calculating the PSD estimate by the method of 
averaging modified periodograms. The software is 
made in the form of a specialized software module 
that can be used as part of a metrologically significant 
part of the application software for complex signal 
analysis [19]. When conducting spectral analysis of 
signals, it should be borne in mind that none of the 
existing window functions is universal in its purpose. 
The choice of a specific window function is due to 
the task and conditions in which the spectral analysis 
of signals is carried out. Analysis of frequency and 
metrological characteristics of window functions and 
recommendations for their application are presented 
in [20–22]. In our case, for the selected window 
function, it is necessary to have the functions 
Hcos(  f, t) and Hsin(  f, t). By definition, these functions 
are calculated analytically. Therefore, depending on 
which window functions are supposed to be used, a 
set of corresponding functions Hcos(  f, t) and Hsin(  f, t) 
can be pre-formed and arranged in the form of special 
collections or libraries of application routines. As an 
example, we will consider three widely used window 
functions in practice: rectangular (box car) window, 
triangular window (Bartlett's) and cosine window. 
Below for these window functions are the functions   
Hcos(  f, t) and Hsin(  f, t), the values of which for t = 0 
and t = T are shown in Table 1.

1) Rectangular window (box car):
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2) Triangular window (Bartlett's): 3) Cosine window:

Investigations of the computational properties of 
the developed algorithm for estimating the PSD were 
carried out on the basis of planning and carrying out 
numerical experiments. For this purpose, sets of 
test signal models were used. Each of these models 
simulated a noisy implementation of a centered
signal          with a given frequency spectrum structure. 
The structural composition of the frequency 
spectrum of the signal model was specified using 
a combination of summed harmonic components 
included in its composition. The frequency values of 
the harmonic components were set in relative units 
and varied in the range from zero to 0.5. Taking 
into account the Nyquist–Shannon theorem, they 
were interpreted as normalized with respect to the 
doubled value of the upper limit of the frequency 
band that the spectrum is supposed to occupy. The 
amplitudes of the harmonic components An were 
set in the range from zero to one. Random initial 
phases φn were set in the range from –π to +π using 
a generator of evenly distributed numbers. The sum 
of the harmonic components was subject to noise. 
This was achieved by generating white noise that 
had a zero mean value. The dispersion     of white 
noise was set during the experiment. We considered 

the signal-to-noise ratio as the ratio of the power of 
each harmonic component to the noise power. This 
simulation approach allowed us to investigate the 
ability to detect harmonic components in noise.

As an example, let's consider the case when the 
signal model contained nine harmonic components. 
The numerical values of the frequencies and 
amplitudes of these harmonic components are 
presented in Table 2. 

Table 2
Parameters for harmonic components of the 
signal realization model

n An fn

1 0.1 0.1 -20.00
2 0.15 0.12 -16.48
3 0.7 0.15 -3.10
4 1.0 0.2 0.00
5 0.5 0.22 -6.02
6 0.35 0.25 -9.12
7 0.25 0.27 -12.04
8 0.2 0.3 -13.98
9 0.05 0.35 -26.02
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Table 1

The values of the functions Hcos(   f, t ) and Hsin(   f, t ) for the rectangular (box car), triangular (Bartlett's) 
and cosine windows at t = 0 and t = T, when fk = kf0 and f0 = T  –1 

Window Hcos(   fk , 0 ) Hcos(   fk , T ) Hsin(   fk , 0 ) Hsin(   fk , T ) 

Rectangular (box car) 0 0

Triangular (Bartlett's) 0

Cosine 0 0
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The variance       of the additive noise was equal 
to unity. The procedure for obtaining time samples    

of the result of binary-sign stochastic quantization
for the signal model       and the formation of a 

segments pseudo-ensemble based on them was 
carried out using discrete-event simulation. The 
normalized PSD estimates calculated for this signal 
model are shown in Figures 2–4.

σe
2

ti
Z

x t
o

( )

a b

Figure 2 – Normalized power spectral density estimate, rectangular window (box car): а – one segment; b – ten 
segments

a b

Figure 3 – Normalized power spectral density estimate, triangular window (Bartlett's): а – one segment; b – ten 
segments

a b

Figure 4 – Normalized power spectral density estimate, cosine window: а – one segment; b – ten segments
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They were calculated with a resolution of 0.0005 
conventional units of the normalized frequency within 
the entire analysis range from zero to 0.5. For each of 
the three window functions, the PSD estimates were 
calculated for one and ten segments. The overlap 
of the segments was half their length. For the PSD 
estimates calculated for one segment, we observe 
the presence of significant fluctuations relative to 
the true values of the frequency components. At the 
same time, it is difficult for us to identify the presence 
of weak harmonic components in the spectrum, 
for which the signal-to-noise ratio is rather low. In 
particular, the harmonic component with a frequency 
of 0.35 and amplitude of 0.05 is masked by noise. 
It is clearly seen that an increase in the number of 
processed segments leads to an improvement in the 
quality of PSD estimates and a decrease in the level 
of additive noise. All nine frequency components are 
present on the graphs of PSD estimates calculated 
for ten segments. The weaker harmonic components 
are clearly visible and their position in the spectrum 
corresponds to the tabular data. There are no false 
spectral lines.

Conclusion

The paper considers the development of 
mathematical and algorithmic support that allows 
increasing the computational efficiency of estimating 
the PSD by the method of averaging modified 
periodograms in discrete form. This development 
was carried out on the basis of the use of binary-
sign stochastic quantization to obtain the digital code 
of the analyzed signal. A discrete-event model is 
used to represent the result of binary-sign stochastic 
quantization in time. This model allowed us to 
reduce the calculation of PSD estimates to discrete 
processing of functions that are the result of cosine 
and sine Fourier transforms for window functions. 
A set of such functions can be formed beforehand, 
depending on the window functions used. As a result, 
we obtained mathematical equations for calculating 
PSD estimates in discrete form, which do not require 
performing numerous multiplication operations. 
These equations became the basis for the development 
of computational algorithms for estimating the 
PSD. The main computational operations of the 
algorithms are the operations of algebraic addition 
and subtraction. The practical implementation of 
these algorithms leads to a decrease in computational 
and time costs in the process of estimating the PSD.

Numerical experiments were carried out on 
the basis of simulation modeling. They showed 
that the developed approach to solving the problem 
posed provides the estimation of PSD by averaging 
modified periodograms with high frequency 
resolution. Reliable identification of spectral 
components is ensured even in additive noise when 
the signal-to-noise ratio is sufficiently low. This 
result is especially important for the analysis of 
broadband signals.

The practical result was the development of 
a problem-oriented software module for spectral 
analysis. This module can be used as part of 
metrologically significant software for the operational 
analysis of complex signals.
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