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Abstract

The study of the electrophysical characteristics of crystalline semiconductors with structural defects is of
practical interest in the development of radiation-resistant varactors. The capacitance-voltage characteristics of
a disordered semiconductor can be used to determine the concentration of point defects in its crystal matrix.
The purpose of this work is to calculate the low-frequency admittance of a capacitor with the working sub-
stance “insulator—crystalline semiconductor with point #-defects in charge states (—1), (0) and (+1)—insulator”.

A layer of a partially disordered semiconductor with a thickness of 150 um is separated from the metal
plates of the capacitor by insulating layers of polyimide with a thickness of 3 um. The partially disordered
semiconductor of the working substance of the capacitor can be, for example, a highly defective crystalline
silicon containing point #-defects randomly (Poissonian) distributed over the crystal in charge states (—1), (0),
and (+1), between which single electrons migrate in a hopping manner. It is assumed that the electron hops
occur only from #-defects in the charge state (—1) to #-defects in the charge state (0) and from ¢-defects in the
charge state (0) to #-defects in the charge state (+1).

In this work, for the first time, the averaging of the hopping diffusion coefficients over all probable elec-
tron hopping lengths via ¢-defects in the charge states (—1), (0) and (0), (+1) in the covalent crystal matrix
was carried out. For such an element, the low-frequency admittance and phase shift angle between current
and voltage as the functions on the voltage applied to the capacitor electrodes were calculated at the 7-defect
concentration of 3-10'° ¢m™ for temperatures of 250, 300, and 350 K and at temperature of 300 K for the
t-defect concentrations of 1:10", 3-10", and 1-10*” cm .

Keywords: partially disordered semiconductor, low-frequency admittance of capacitor, triple-charged intrin-
sic point defects.
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Hu3K04aCTOTHBIA aIMUTTAHC KOHICHCATOPA ¢ padoYnmM
BEIECTBOM «HU30JIATOP —YACTHYHO Pa3ynopsA04eHHbIN
MOJIYIIPOBOAHMK — H30JIATOP»

H.A. Hoknonckuii, U.U. Anukeen, C.A. Boipko

Benopycckuii 2ocyoapcmeennulii ynueepcumenn,
np-m Hezasucumocmu, 4, e. Munck 220030, benapycw

THlocmynuna 07.07.2021
Ipunama x newamu 03.09.2021

HccnenoBanne 31eKTPOPU3NIECKUX XaPAKTEPUCTHK KPUCTAILUTUIECKUX TOIYIPOBOTHUKOB C Nederra-
MU CTPYKTYPBI IPEICTABISIET MPAKTHUECKHUI HHTEPEC TIPU CO3TaHNHU PAIMAIMOHHO-CTOWKHUX BapakTopoB. [1o
BOJIET-(DapaiHbIM XapaKTEPUCTHKAM Pas3yTopsIOYEHHOTO ITOIYIPOBOAHUKA MOKHO OTIPEAETISATh KOHIIEHTpa-
IIUI0 TOYEYHBIX 1e(DEKTOB B €ro KpUCTAIIHMYEcKoi Marpuie. Llenb paboThl — paccunTarh HU3KOYACTOTHBIN
aJIMATTaHC KOHJIEHCATOpa C PadOYNM BEIIECTBOM «H3O0JIATOP — KPUCTATUTHIECKUI TOTYIPOBOJHHIK C TOYEU-
HBIMH t-neexTaMu B 3apsaaoBeIX cocTosHUAX (—1), (0) u (+1) —u3omsiTopy.

CI10#1 YaCTUYHO pazynopsiI0YEHHOr0 NOJYyIPOBOIHUKA TONILKUHON 150 MKM OTAENIEH OT METAJIIMYECKUX
00KITaJIOK KOHACHCATOPA TUAICKTPHUSCKUMU MTPOCIIONKAMHU U3 TTOJTUAMUIA TOIIIHHON 3 MKM. YacTHIHO pa3-
YHOPSI0YEHHBIN IMOIYTIPOBOAHNAK PabOYero BemecTBa KOHIeHcaTopa MPeCTaBIseT co00, HalpuMep, CHITb-
HOJE(EKTHBINH KPUCTATMYECKHUI KPEMHUH, COIep KAl TOUeUHbIe {-e()eKThI, CIyYaifHO (TTyaCCOHOBCKH)
pactmpesieTIeHHbIe TI0 KPUCTAJLTy, B 3apsSaoBbIX cocTosHUAX (—1), (0) 1 (+1) Mex1y KOTOPBIMH MPBDKKOBBIM
00pa3oM MUTPHPYIOT OJMHOYHBIE AEKTPOHBL. CUUTAETCS, YTO MPBDKKHA DIEKTPOHOB MPOUCXOAST TOIBKO C
t-1e(pEKTOB B 3apsIOBOM COCTOSTHUH (—1) Ha £-AeeKTH B 3apsanoBoM cocTostHIH (0) U ¢ -1eEeKTOB B 3apsi-
noBoM coctossHuH (0) Ha -AeheKTH B 3apsSA0BOM COCTOSHUH (+1).

B pabote BniepBbIe MpoBeneHO ycpenHerne KodUIMEHTOB MPBDKKOBON TU(Py3un IO BCEM BEPOSAT-
HBIM JIJTHHAM TIPBDKKA JIEKTPOHA MEXAY f-HedexTamu B 3apsaoBbix coctosHUAX (—1), (0) u (0), (+1) B Ko-
BaJICHTHOM KpUCTaJUIMYECKON Marpuue. [l Takoro 3neMeHTa pacCuMTaHbl HU3KOYACTOTHBIA aAMUTTAHC U
yroi casura a3 Mexay TOKOM U HalpsDKEHHEM B 3aBHCHMOCTH OT TPHIIOKEHHOTO Ha AJIEKTPOIbI KOH/ICH-
caropa HalpsDKEHUS MPU KOHIEHTpaIu f-1e(eKToB 3-10" e s temmeparyp 250, 300 u 350 K u npu

temneparype 300 K mi1s koHIeHTpanmii 7-1edexroB 1-10", 310" 1 1-10*° em°.

KiroueBble cj10Ba: 4aCTUIHO pasynopﬂz[oquHHﬁ MOJYIIpOBOAHUK, HHM3KOYaCTOTHBIN aJIMUTTAHC KOHJCH-
caTopa, TpeX3apsaAHbIC COOCTBEHHbBIE TOUCUHBIE ,Z[e(i)eKTLI.
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Introduction

In the works [1, 2], for the first time, a variant
of controlling the hopping electrical conductivity via
hydrogen-like donors along a semiconductor film
using an external electrostatic field E(x) = —do/dx
perpendicular to the film surface, which does not lead
to the appearance of a current and does not violate
the electrical neutrality of the film as a whole, was
theoretically considered. However, the hopping elec-
trical conductivity longitudinal to the direction of the
controlling external electric field was not considered
in [1, 2]. The field effect was studied and the quasi-
frequency (low-frequency) capacitance and conduc-
tivity of silicon crystals with hopping electron mi-
gration via point two-level defects with positive and
negative correlation energies in three charge states
(-1), (0), and (+1) were calculated [3, 4]. However,
the electrical capacity and conductivity of the “in-
sulator—partially disordered semiconductor—insula-
tor” structure were not investigated in [3, 4]. For the
first time, the static capacitance—voltage characteris-
tics of a {-diode made of crystalline silicon, in which
current was carried only by electron hopping via ¢-
defects, were calculated [5]. However, in the diode
model constructed in [5], there was no averaging of
diffusion coefficients over all probable electron hop-
ping lengths via ¢-defects in three charge states (—1),
(0), and (+1). Taking into account electron hopping
via point defects, the temperature and frequency de-
pendences of the dielectric permittivity of silicon ir-
radiated with a large dose of neutrons were studied
[6]. The low-frequency electrical capacitance as well
as the electric field and potential distribution for the
“metal—insulator—intrinsic semiconductor—insulator—
metal” structure were calculated [7-9]. However,
the capacitance—voltage characteristics for the struc-
ture with a disordered semiconductor layer were not
calculated in [7-9]. The results of an experiment on
measuring the capacitance of a thin-film capacitor
(structure Al-Al,05—Al) were interpreted [10] tak-
ing into account quantum effects. A method was de-
scribed [11, 12] for determining, from the tempera-
ture dependences of capacitance and conductivity,
the ionization energy and concentration of deep cen-
ters in an overcompensated semiconductor placed
between insulator plates (40—100 pm thick polyeth-
ylene terephthalate), to which a sinusoidal voltage
was applied through copper contacts. However, in
[11, 12] the experimental data on the conductivity
and capacitance of the studied structure were not
compared with theory.

The purpose of this work is to calculate the low-
frequency admittance of a capacitor with the work-
ing substance “insulator—crystalline semiconductor
with point #-defects in charge states (—1), (0) and
(+1) with hopping migration of electrons between
them—insulator”.

Model of capacitor with working substance
“insulator—partially disordered semiconduc-
tor—insulator”

Let a wafer of highly defective crystalline sili-
con (hd-Si) with a thickness of d; and a surface area
A be in the middle between the metal plates of a
flat capacitor and separated from them by the lay-
ers of insulator (e.g., polyimide) with a thickness of
d; (Figure la). The capacitor is connected to a con-
stant electrical voltage source. The x coordinate axis
is perpendicular to the surface of the semiconductor
wafer occupying space —d,/2 < x < d /2, the y and
z coordinate axes are parallel to the wafer surface.

YA Metal Insulator b R,
C,' Ci
o G e

hd-Si
+ — Cs
c Geq
| | | -

—d/2 0 d)2 X+ -

z a Ceq

Figure 1 — Cross-section of capacitor with a wafer of
highly defective crystalline silicon (kd-Si) of thickness d,
separated from the metal capacitor plates by the insula-
tor layers of thickness d;. Across the semiconductor wafer
an electric potential difference is created by two metal
electrodes parallel to the plane yz (a). Equivalent scheme
of capacitor with the working substance “insulator—par-
tially disordered semiconductor—insulator” (). Simplified
equivalent scheme of the system (c)

Let us assume that in one part the field potential on
the wafer surface is positive ¢(x = —d,/2) = ¢,, and
in the other it is negative o(x = d,/2) = —o,, then
the potential difference applied to the semiconduc-
toris U, = o(x = —d/2) — o(x = d/2) = 2¢,. We will
consider electrodes located parallel to the yz plane
(so that the field distribution in the wafer along the
y and z coordinates will be symmetric). The screen-
ing of the external electrostatic field is caused by the
redistribution of electrons hopping via defects in the
charge states (0, —1, and +1; in units of elementary
charge e against the background of a silicon matrix),
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i.e. by the migration of charge states of immobile
defects to a distance much greater than the average
distance between them.

The capacitor with the working substance “in-
sulator—partially disordered semiconductor—insula-
tor” contains series-connected capacitances of insu-
lating layers C; and a parallel R(C; + C,)-circuit of
the semiconductor wafer (see Figure 15). Here C; =
= g;A/d; and C, =g, A/d, are the geometric capaci-
tances of insulator and semiconductor with static
dielectric permittivities €; = ¢, &, and g, = €, &) (we
assume that radiation defects do not contribute to the
static dielectric constant of Si crystals), €,; = 3.5 and
&, = 11.5 are the relative permittivities of the poly-
imide and the silicon crystal lattice, &, = 8.85 pF/m is
the electric constant, R, = R (U) is the semiconductor
resistance, C, = C(U) is the differential capacitance
of the semiconductor, U is the voltage created by the
metal plates of the capacitor.

The real part C,, = C,(U) of the complex elec-
trical capacitance and the active component of the
conductivity G, = G.(U) of the structure in the
equivalent circuit (see Figure 1c) is [11, 13]:

c -G 1+ ’R}(C, +C,)(C, +C, +C;/2)
“ 2 1+[0R,(C, +C, +C;/2))*

(D

G - @RC/)
1+ [0R(C,+C + G/

2)

where U (= U,,) is the constant voltage across the
capacitor plates, o is the angular frequency of the
variable component of the measuring signal with the
amplitude |U, | < |U|.

From Egs. (1) and (2) we find the total con-
duction (admittance) Y= Y(U) and the phase shift
0 = 0(U) between current and voltage of the capaci-
tor with the working substance “insulator—partially
disordered semiconductor—insulator”:

Y=[Gi+ (0C,)1"* =
1/2
— (DCI- 1+ [(DRs (Cg + Cs )]2
2 (1+[0R(C, +C, +C;/2)T

)

0 = arctan (~0C,/G,,) =

1+ 0*R>(C, +C)C, +C.+C.2
= arctan| — (G CNG + G +G/2) , (@)
®R.C,/2

where R, = R(U) and C; = C(U). Note that the total
resistance (impedance) Z = Z(U) is related to the ad-
mittance Y as follows: Z=Y "

g‘ c-band
En +1 9
|2)-band
gen rec _
B2 T Z e o T,
e
—EPL ) A,
e
o L e o o
BNy o T w0 1o iWO’”
! |1)-band
EY)=0—
v-band

X
Figure 2 — Single-electron energy E as function of x co-
ordinate in semiconductor with point two-level (triple-
charged) defects of #-type in equilibrium (at U = 0): Ef,j) is
the mobility edge of conduction band electrons, Eé”) <0is
the Fermi level in the band gap, counted from the hole mo-
bility edge (E\) = 0), A, = E, — E, is the width of energy
gap between |1)- and [2)-bands, W, ,, and W_, ; are widths
of|1)- and |2)-bands. Arrows show hops of single electrons
e via|l)- and |2)-bands as well as generation [gen: 2(0) —
— (—1)+(+1)] and recombination [rec: (—1)+(+1) — 2(0)]
electron transitions between them; |d) and |a) are states of
shallow hydrogen-like donors and acceptors in the charge
states (+1) and (—1), respectively

For R,> 1/0C, from Eq. (1), the inverse equi-
valent capacity of the entire structure is 1/C,, =
=2/C;+ 1/(C;+ C,). Since the capacitances of in-
sulator layers C; and semiconductor C; + C, are
connected in series, the charge on each of them is
equal to Q. Thus, the voltage drops across insulators
U, = Q/C; and across semiconductor U, = Q/(C, +
+ C,) are related to the voltage across the capacitor
U= 0/C, as follows: U=2U, + U;. By substituting
the charge Q on the capacitor, expressed in terms of
U and C; + C,, into U we obtain the voltage across
the capacitor U, for which the voltage drop across the
semiconductor is equal to U,:

c +C 20C.+C )+ C.
U=U,— g:UY(S s L.
- C ] C.

eq i

)

A highly defective silicon crystal (kd-Si) con-
tains point two-level #-type defects in a concentration
sufficient to stabilize the Fermi level E}; in the energy
gap. Defects of #-type in the charge states (+1) and
(0) form a |1)-band with the energy levels E|, and the
ones in the charge states (0) and (—1) form a |2)-band
in the band gap (energy levels E,), located closer to
the c-band than |1)-band (Figure 2). Examples of
t-defects are amphoteric impurities (Au, Cu).

Let us consider silicon under conditions of only
hopping electron migration via immobile radiation
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defects (of #-type) in the charge states (—1) and (0),
as well as in the charge states (0) and (+1). The total
concentration of defects in the charge states (0), (—1),
and (+1)is N,=N,+ N_, + N,,.

We assume that |d)- and |a)-centers are com-
pletely ionized and their concentrations N, and N,
satisfy the conditions: N,/N,<1 and N,/N,< 1.
Thus, the condition of electrical neutrality of the par-
tially disordered semiconductor has the form:

N+]:N—]a (6)

where N,y =N, .;and N, =N, _,.
The concentrations of ionized and neutral de-
fects can be written as [14]:

NZ:Nth’ (7)

where f is the probability that the defect is in one of
three possible charge states Z=—1, 0, +1.

If we neglect the excited states of radiation de-
fects, then the inverse distribution functions 1/f, of
defects in |1)- and |2)-bands over charge states are
(3, 4]:

1 EV+E E +E,+2EY
f_:HBZeXp(F—”}B_ZeXp[& ,

-1 kBT Bl kBT
(©) (F©
Lzuiexp(uj;exp(wj,
fO Bl kBT [32 kBT
(F®
L:HBIGXP[M}
f+1 kBT

B, (_(El +E,+ 2E}(:U)) J ’ )

+ —exp
2 kBT

where E\”) =E, — E; is the Fermi level (chemical
potential) £y, counted from the v-band hole mobil-
ity edge (E,(,f’) =0) of an undoped crystal [15, 16];
E” <0 for the Fermi level in the band gap; E, =
=E,—E,,>0,E,=E | —E,>0; kzT is the thermal en-
ergy. For dominant radiation defects in silicon (mainly
divacancies), following the experimental data from
[17-19], we assume: £, =225 meV, E, = 575 meV,
ie. A,=E,—E, =350meV, B, =By/B., =1, B,=
=By/B_; =1, where B, is the number of quantum
states of the defect in the charge state Z with energy E,.

With the total concentration of charged radia-
tion defects N, = N_| + N, with charge +e randomly
(Poissonian) distributed over the crystal, we have equal
mms fluctuations W= W_, y= W, ,, of the electrostatic
energy, i.e. the widths of |2)- and |1)-bands are [20, 21]:

1/3

e (4n
2o

s 9,=0

W_io= Wy, =1.637

where the Coulomb interaction of each charged
defect only with its nearest charged defect (ion)
is taken into account; e is the elementary charge;
(Nep)eq = N,/2 is determined from the condition of
maximum effective concentrations N_;, = Ny =
=N_,N,/N,=N,N_,/N,of single electrons hopping via
t-defects in the charge states (—1), (0) and in charge
states (0), (+1). Then we obtain (V) = Vi Dinax =
= Nt/4’ (NO)max = Nt/2 and (Nfl,O)max = (NO,H)max =
= N,/8 [22]. Note that 3> A,.

For a semiconductor with uniformly distribu-
ted point defects of the crystal lattice, the values of
the function f,(¢) depend on the coordinate x only
through the potential ¢(x) and are obtained from f,
by replacing £’ < 0 in Eq. (8) by

E(p(x) = B = eq(x), (10)

that is for @(x) < 0 the Fermi level E}Sv)((p) shifts to
the top of the v-band and for @(x) > 0 it shifts to the
band gap.

The change in the concentration of charge states
Z=-1,0,+1 of NA¢) — N, defects in the electric
field with the potential ¢(x) is determined by Eq. (7)
taking into account Egs. (10) and (8). In this case, it
is assumed that the energy gap A, between |1)- and
|2)-bands, as well as the width of each band W, do
not depend on the potential.

Due to the symmetry of the problem with re-
spect to reflection x — —x, we consider only the re-
gion —d, /2 < x < 0. The electrostatic potential @(x)
inside the semiconductor at a point with coordinate x
satisfies the Poisson equation [23, 24]:

diui(d_@):_@
dx*  2dol dx g,

where p(p(x)) = e[N,(9(x)) = N_(¢(x))] is the vol-
ume density of the induced charge; N_, = N, is the

electrical neutrality condition of the semiconductor
wafer at ¢, = 0.

By integrating Eq. (11) over ¢, we obtain the
electric field strength:

1/2
d 2 ro,
—(p=i(——f0 p(cp)dcpj ,
SS

(11

- (12)

w_9

where for ¢, > 0 the sign should be taken, while
for ¢, <0 the “+” sign should be taken.
From Eq. (11), taking into account Eq. (12), we
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obtain the charge Q. induced by the external electric
field per unit area A of the flat surface of the silicon
wafer:

O, 0 do
== [ 2pP()

dx=¢,—

x=—d /2

0 1/2
=22, [orde) 03
where for ¢, > 0 the “—" sign should be taken, while
for @, < 0 the “+” sign should be taken.

The differential electrical capacitance per unit
silicon surface area 4, taking into account Eq. (13), is

do, _ p(ey)
Ado, d(p/dx|

C

N

A

x=—d,/2

eNt[f+l((ps) _f—l((ps)]
1/2
£~ [} o) do)

(14)

The change under the action of the field effect
of the hopping electrical conductivity [caused by the
migration of single electrons across the wafer thick-
ness via immobile radiation #-defects in the charge
states (—1) and (0), as well as in the charge states (0)
and (+1)] is

S (o )__ N_jo(@M_; o+ Ny 1 (0)M, do—
do/dx
e [N (OM, 0+NO+1(0)M0+1d .
do/dx
¢ (. N’l’o ((p)M*LO + NO,H ((P)M(),H
+— do—
d ) do/dx
o,
0('
_e [ NoagOM o+ Ny 1 (OM,,, dep, (15)
s J d([)/dx

— ¢

where N_; o(9) = N_(@)No(9)/N, and Ny ., (9) = Ny(¢)*
XN_,,(¢)/N, are the effective concentrations of single

electrons hopping via t-defects in the charge states
(—1), (0) and in the charge states (0), (+1); M_, ; and
M, ., are the drift mobilities of electrons hopping
via t-defects in the charge states (—1), (0) and in the
charge states (0), (+1).

The relationship between the hopping diffusion
coefficients D_, ; and D, ., and the drift hopping mo-

bilities M_;  and M, ,, of electrons hopping via point
t-defects of the crystal matrix is established by the
Nernst-Einstein—Smoluchowski relation (see, e.g.,
[3,25]):

kT
= é—l,O ——

e

D—I,O
M,

D0,+l
MO,+1

kT
= E.30,+1 -

e

(16)

b 9

where &, > 1, §,; = 1 are the dimensionless pa-
rameters, which are determined by the ratio of the
fluctuation spread of #-defect levels (with average
values of £, and E,) to the thermal energy ki T; fur-
ther we assume &, =&, = 1

The diffusion coefficients D_;, and D, of
electrons hopping via z-defects in a covalent crystal
matrix (see Eq. (16)) can be estimated by averaging
over all probable hopping lengths  (cf. [22-27]):
D o= é<r—1,o(”sT)”2>a Dy, = %<Fo,+1(”aT)”2>s (17)
where I'_, (v, T) = v exp[—(2r/a_, + W_, o/ksT)] and
Lo.1(r.T) = viexp[—(2r/ay + Wy ., /kyT)] are frequen-
cies of electron hopping via ¢-defects in charge sta-
tes (—1), (0) and (0), (+1) [28]; v;,= 10 THz is the
characteristic frequency of crystal matrix phonons;
a_, =h/Q2myE,)"* and a, = h/(2m,E,)"* are the radii
of localization of an electron at the z-defect in the
charge state (—1) and (0), respectively, m,, is the elec-
tron mass in vacuum.

From Eq. (17), taking into account the distribu-
tion of distances » between t-defects [21], we get:

B ZchhNeq W—l,o
10~ Xp x
° 3 le T
x| rexp| - 2r 4’ N, ||dr
a, 3 o ’
0
ol = 2TCV1tNeq Xp %,+1 %
’ 3 ks T
3
XJ’r4 exp{_(z 4mr Neqﬂdr’ (18)
ap 3
0
Where Neq = (Nfl,())max = (N0,+1)max = ]Vt/8

From Eq. (15), taking into account Eqs. (16)—
(18), we obtain the resistance of a highly defective
crystalline silicon (Ad-Si) wafer due to the hopping
of single electrons via #-defects along its thickness:

R, =R(U(9y)) =

(19)
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where d, and A4 are the thickness and the surface area
of the hd-Si wafer, 6 = o(9,) = 6(0) + do(9,) is the
electrical conductivity, and 6(0) = e[N_; ((0)M_, ; +
+ No41(0)M, ] is the conductivity at ¢, = 0. For the
considered low frequencies, the electrical conductiv-
ity o is frequency-independent [29, 30].

Note that Egs. (14) and (19) were obtained
under the assumption of quasi-stationary filling of
energy levels according to Eq. (8) taking into ac-
count Eq. (10), therefore C, and R, are the quasi-
static (low-frequency) capacitance and resistance of
semiconductor. The quasi-stationarity condition is
satisfied at 0/2n <I"_; o(r, T) and 0/2n < T (7, T).
In other words, this can expressed by the inequality
0/2n < c/e,, where €,/ is the Maxwell relaxation
time for hopping conduction.

Calculation results and discussion

The calculations were carried out for the fol-
lowing parameter values: semiconductor thickness
d,= 150 pm, insulator thickness d; =3 pm, relative
permittivities of semiconductor (hd-Si) g, =11.5
and insulator (polyimide) ¢, = 3.5, frequency of al-
ternating electric field /2n = 1 kHz.

Figure 3a shows the results of calculating the
ratio of the low-frequency admittance Y(U) to oC,/2
according to Eq. (3) at various values of the voltage
U created by metal electrodes on the surface of insu-
lator interlayers, for N,=3-10'"" cm > at temperatures
T =250, 300, 350 K. The values of U are related to
U, by Eq. (5) and U, = 2¢, was chosen so that the in-
equality eU, <A, is fulfilled. It is seen that for U= 0
(flat-band mode) the admittance of the capacitor with
the working substance “insulator—partially disordered
semiconductor—insulator” increases with temperature.

Figure 36 shows the results of calculating the
ratio of the low-frequency admittance Y(U) to oC,/2
according to Eq. (3) at different values of voltage U
created by metal electrodes on the surface of insula-
tor interlayers for temperature 7 = 300 K at concen-
trations of z-defects in disordered silicon N, = 1-10"?,
3-1019, 1-10%° cm>. 1t is seen that the admittance in-
creases with the concentration of #-defects.

Figure 4a shows the results of calculating the
phase shift angle 6(U) between current and voltage
according to Eq. (4) at various values of voltage U
created by metal electrodes on the surface of insula-
tor interlayers, for N, = 3-10"" cm ™ at temperatures
T=250,300, 350 K. It is seen that the absolute value
of the phase shift angle decreases with temperature.

N,=310" cm™

0.96

0.92

2Y/0)C,’

0.88

0.84

S
—_

0.96

0.92

2Y/(,0C,‘

0.88

0.84

—4 -2 0 2 4
u,v
Figure 3 — Dependence of admittance 2Y/wC; on electrode
voltage U, calculated by Eq. (3): a) for N, = 310" ecm ™ at
temperatures 7 (K): 250 (curve 7), 300 (2), and 350 (3);
b) for T = 300 K at r-defect concentrations N, (em™):
1:10" (1), 3:10" (2), and 1-10% (3)

Figure 4b shows the results of calculating the
phase shift angle 6(U) according to Eq. (4) at vari-
ous values of the voltage U created by metal elec-
trodes for temperature 7= 300 K at the concentration
of t-defects in disordered silicon N, = 1-1019, 3-1019,
1-10*° cm>. It is seen that in the flat-band mode (at
U = 0), all other conditions being equal, the phase
shift angle modulus is minimum for the concentra-
tion of ¢-defects N, = 3-10" cm > and is maximum for
N,=1-10" cm™.

Note that the value of the Fermi level energy
E =400 meV, obtained from the electrical neutral-
ity condition N, = N_,, does not depend on the tem-
perature, since EF(U) is in the middle between |1)- and
|2)-band. This practically coincides with the experi-
mental value of £ in silicon [17-19], which con-
tains a high concentration of radiation defects.

Note that the capacitor with the working sub-
stance “insulator—partially disordered semiconduc-
tor—insulator” is radiation-resistant, because radia-
tion defects are already present in the semiconductor
in large numbers. This suggests that this element is
promising for use as a varactor. Also, the dependenc-
es of the electrophysical characteristics (Eqs. (1)—
(4)) on the potential at the electrodes make it pos-
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Figure 4 — Dependence of phase shift angle 6 on electrode
voltage U, calculated by Eq. (4): a) for N, = 3- 10" cm ™ at
temperatures 7 (K): 250 (curve 7), 300 (2), and 350 (3);
b) for T = 300 K at t-defect concentrations N, (em™):
1:10" (1), 3:10" (2), and 1-10%° (3)

sible to determine the concentration of ¢-defects in
the disordered semiconductor separated by insulator
interlayers from the capacitor plates [11].

Conclusion

The structure “insulator—partially disordered
semiconductor—insulator” is proposed as a working
substance of a capacitor. The semiconductor layer
with a thickness of 150 pm is separated from the
metal electrodes of the capacitor by insulating layers
of polyimide with a thickness of 3 um. The semi-
conductor layer is a highly defective silicon crys-
tal containing radiation point two-level #-defects in
three charge states (—1), (0), and (+1) with hopping
migration of single electrons via them, i.e. defects
form |1)- and |2)-bands in the band gap.

The calculation gives a nonmonotonic depen-
dence of the low-frequency admittance and the
phase angle between current and voltage on the elec-
tric potential at the metal plates. At the concentra-
tion of s-type radiation defects equal to 3-10" ecm™,
with an increase in temperature from 250 to 350 K,
the admittance increases by about 12%. With an in-
crease in the concentration of ¢-defects from 1:10" to
1-10% e¢m? at temperature of 300 K, the admittance

of the capacitor increases by about 13%. In the cal-
culations, for the first time, the diffusion coefficients
were averaged over all probable electron hopping
lengths via ¢-defects in the charge states (—1), (0) and
(0), (+1) in the covalent crystal matrix. Note that the
considered element is radiation-resistant, since the
semiconductor layer already contains radiation point
defects in a high concentration.
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