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Abstract

Currently, along with growth in industrial production, the requirements for product quality testing are
also increasing. In the tasks of defectoscopy and defectometry of multilayer materials, the use of thermal non-
destructive testing method is promising. At the same time, interpretation of thermal testing data is complicated
by a number of factors, which makes the use of traditional methods of data processing ineffective. Therefore,
an urgent task is to search for new methods of thermal testing that will automate the diagnostic process and
increase information content of obtained results. The purpose of article is to use the advances in deep learning
for processing results of active thermal testing of products made of multilayer materials and development
of an automated system for thermal defectoscopy and defectometry of such products.

The proposed system consists of a heating source, an infrared camera for recording sequences
of thermograms and a digital information processing unit. Three neural network modules are used for
automated data processing, each of which performs one of the tasks: defects detection and classification,
determination of the defect depth and thickness. The software algorithms and user interface for interacting
with system are programmed in the NI LabVIEW development environment.

Experimental studies on samples made of multilayer fiberglass have shown a significant advantage of the
developed system over using traditional methods for analyzing thermal testing data. The defect classification
(determining the type) error on the test dataset was 15.7 %. Developed system ensured determination
of defect depth with a relative error of 3.2 %, as well as the defect thickness with a relative error of 3.5 %.
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ABTOMATHU3MPOBAHHAA CUCTEMA TEIJIOBOH e eKToOMeTpUun
MHOT'OCJIOMHBIX MATEPUAJIOB HA OCHOBE IJIy0OOKOI0 00y4eHus

A.C. Mowmor, P.M. I'anaran, B.IO. I'nnyxoBckuii

Hayuonanvuviii mexnuyeckutl ynugepcumem Yxpaurvl
«Kuesckuil nonumexnuyeckuit uncmumym umenu Meopsa Cuxopcrozoy,
np-m Ilo6eowl, 37, 2. Kues 03056, Yxpauna

Hocmynuna 12.03.2021
Hpunama k neuamu 15.03.2021

Ha ceronusimamii 7eHb, BMECTE C POCTOM TEMIIOB POMBILIICHHOTO MPOU3BOICTBA MOBBIILAIOTCS TAKKE
1 TpeOOBaHMsI K KOHTPOJIIO KauyecTBa MpoAyKIHH. B 3anauax nedexkrockonuu u 1eeKTOMETPUN MHOTOCIIOM-
HBIX MaTepHaJIOB MEPCIECKTHBHBIM SBJISIETCSl MCIIOB30BAHUE TEIUIOBOTO METOa HEPa3pyIIAIOLIETr0 KOHTPO-
7. B To ke Bpemsi, MHTepIpeTanys JaHHBIX TEIUIOBOTO KOHTPOJS YCIOKHEHA psSAoM (PakTopoB, UTO Je-
JIaeT UCTOJIb30BAHUE TPAAULIUOHHBIX METOIOB aHaju3a JaHHBIX HedddekTuBHBIM. [l03TOMY akTyanbHBIM
3aJJaHuEeM SIBJSIETCSl TIOMCK HOBBIX METOJOB TEIUIOBOIO KOHTPOJS, KOTOPBIC IO3BOJST aBTOMAaTH3MPOBAaTh
npolecc AMarHOCTUKH U MOBBICUTh MH()OPMATHBHOCTD MOJMYYCHHBIX PE3ysbTaToB. Llenbio cTaThu SBISIIOCH
WCIIOJIb30BAHUE JTOCTHIKEHUM B 00acTH TIyOOKOro oOydeHus! Uit 0OpaOOTKH pe3ylbTaToB aKTHBHOTO Te-
TUIOBOTO KOHTPOJISI M3 U3 MHOTOCIOWHBIX MaTepuasioB U pa3padoTKa aBTOMaTH3HMPOBAHHON CHCTEMBI
TEIUIOBOH Je(PEKTOCKONNHU U ACPEKTOMETPUH TAKUX U3/ICIHH.

[Ipennaraemas cucrema COCTOUT M3 MCTOYHHKA HArpeBa, TEIJIOBU30pa AJISl PErHCTPALlH IOCIeI0Ba-
TeJbHOCTEH TepMorpaMM M Onoka nugpoBoil 00padoTku uHpopManmu. s aBTOMaTu3upoBaHHOW 0Opa-
OOTKM JaHHBIX MCIOJIB3YIOTCS TPH HEHPOCETEBBIX MOMYIIS, K&JKABII M3 KOTOPBIX BBIMOIHSICT OJHY U3 3a/1au:
oOHapyxeHHe M Kiaccuukanusa AeeKTOB, ONpeneicHUe ITyOMHBI 3ajeraHus IeeKTa M ero pacKpbl-
TS (TommmHel). [IporpaMMHbIe anropuT™bl ¥ HHTEpQEiic B3aUMOICHCTBHUS ¢ CUCTEMOM BBITIOJIHEHBI B CPEIe
paspabotku NI LabVIEW.

OKCHepUMEHTAIbHBIE HCCIIEOBaHUS Ha 00pa3lax M3 MHOTOCIOHHOTO CTEKJIOTEKCTONMTA IMOKa3aiH
3HAUUTEIBHOE MPEUMYLIECTBO Pa3pab0TaHHON CHCTEMbI HaJ METOJaMHM, HCIOJIb3YIOMIUMHI TPaIUIMOHHBIC
AITOPUTMBI aHAJIM3a JaHHBIX TEIUIOBOTO KOHTpos. OmmbKka onpeneneHus Tuna (kiaccuuranum) aedexra
Ha TeCTOBOM oOpasie coctaBuna 15,7 %. Pazpaborannas cucrema obOecrnieuniia onpeaesacHne nyOuHbl Je-
(eKxTa C OTHOCHUTENBHON MOrPelIHOCTEIO 3,2 %, a TakKe TOJILIUHBI Je(eKTa ¢ OTHOCUTEIbHON MOrpemHo-
cThio 3,5 %.

KaroueBble ci10Ba: TEIUIOBOH KOHTPOIIb, KOMIIO3UIIMOHHBIE MaTEpHAIbI, TITyOOKoe 00yUYeHHE.
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Introduction

Nowadays, products made of multilayer and
composite materials are widely used in various
industries. In particular, composite materials are
increasingly used in aircraft industry, from which the
most responsible elements of aircraft construction
are made. At the same time, there is a tendency to
increase the requirements for product quality testing.
Timely detection of hidden defects makes it possible
to prevent significant material and sometimes human
losses. Due to a number of advantages, methods of
active thermal non-destructive testing (TNDT) are
used in composite materials testing tasks. Therefore,
it is important to create automated systems for
determining characteristics of defects based on the
results of active TNDT, which will have increased
informativeness, reliability and accuracy of
defectometry in conditions of significant levels of
noise and complex internal structure of the object of
testing (OT).

The results of multilayer materials testing are
influenced by a large number of random factors due to
changes in the properties of composites, which occur
due to complexity of their manufacturing processes,
a large number of types of possible defects that
cannot be formalized, imperfect inspection methods
and defectoscopic equipment. Features of properties
and physical characteristics of multilayer materials
complicate the use of many existing methods of
TNDT, which use mainly deterministic models
and their corresponding data processing methods.
Such methods do not provide the necessary noise
immunity, measurement accuracy and reliability of
testing [1].

A rather limited number of scientific papers
are devoted to the analysis of thermal fields for
the purpose of automated simultaneous detection,
classification of defects and determination of
their parameters. Initial researches were aimed at
performing defectometry by solving the inverse
tasks of TNDT. With the development of modern
technologies of digital data processing, development
trends have shifted to the application of latest
statistical methods and intelligent systems based on
deep learning.

Today, classical methods of digital signal
processing, such as Fourier transform or wavelet
analysis, are used to analyze the data of active
TNDT [2, 3]. In particular, the algorithm of dynamic
thermal tomography is implemented with the use
of these methods [4]. Another approach is based

on a comprehensive statistical analysis of the entire
recorded sequence of thermograms, which uses the
principal components analysis method [5]. Each of
these methods has its advantages and disadvantages,
but they are all used to solve a narrow range of tasks
and are not universal and adaptive [6].

In [7, 8] the method of recognition of three-
dimensional defects is described. It uses the method
of degree of similarity estimating for surface thermal
field of OT with the existing 3D surface models,
which were obtained by numerical modeling of
three-dimensional thermal conductivity task. This
approach in practice demonstrates low adaptability,
as it requires construction of mathematical models of
OT for each new testing task.

The work [9] is devoted to the study of deep
learning application for composites testing. Study
shows results of processing experimental data on
carbon fiber testing using two neural networks,
which provide both qualitative detection of hidden
defects and defectometry elements. The first neural
network is designed to detect defective areas, and
the second is used to classify defects by depth. The
high efficiency of the neural network in both types of
problems is proved.

The authors of [10] conducted a study of the
effectiveness of method for determining defects
depth in multilayer materials using deep learning.
It is presented and implemented a new algorithm
based on the use of a multilayer neural network to
determine the depth of defects in real time. Study
uses computer simulations to create an artificial data
set. An experimental validation of neural networks
efficiency was performed, which showed an up to
10 % error in determining defects depth at the level
of 0.5 mm.

Analysis of existing publications shows that the
use of modern intelligent systems allows to solve the
problems of thermal defectometry with increased
efficiency. Existing studies prove the prospects of
using deep learning for defect classification and
defectometry. The error in measuring defects depth
by traditional methods reaches 7—10 %, while neural
networks can reduce it to 2.5-3 %. At the same
time, existing works do not provide a quantitative
assessment of the effectiveness of determining
defects thickness using deep learning. The authors
mainly focus on solving one specific testing task,
while the modern approach requires a comprehensive
automated analysis of OT in order to describe it as
fully as possible. Currently, there are no systems
that in practice implement a simultaneous automated
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solution to the problems of detecting defects of
multilayer materials by the active thermal method,
their classification and defectometry.

Thus, there is a need to develop new methods
and automated testing systems for products
made of multilayer materials. A large number of
interconnected informative parameters, impossibility
of linear separation of defects classes on diagnostic
grounds, need for automation and increasing testing
informativeness require to use the latest data
processing systems, in particular, based on deep
learning algorithms.

Physical principles of active thermal
nondestructive testing

Dynamic thermal field is described by the
function 7(x,y,t). During the active thermal
non-destructive testing, the character of change
in instantaneous temperature values over time at
surface points of OT is considered. To obtain these
dependences, the OT is heated by a heat source for
a certain time. The process of heating and further
cooling of OT is registered using a thermal imager.
Resulting sequence of thermograms reflects the
change in temperature field on the surface of the OT
over time [11].

Considering the temperature dynamics at
individual points (pixels) of thermograms, which
correspond to the coordinates of OT surface,
it is possible build a temperature profile— a
chart of temperature change over time for this
point (Figure 1). As a rule, in defect-free areas,
the nature of temperature change is constant and is
considered known. In this case, we can enter some
reference temperature 7, ,(x,;, V,q> T), Which is
considered defect-free. In the defect zone, the regular
nature of the thermal field is disturbed and local
temperature differences 7, (x, y, 1), occurs, which
lead to a change in the temperature profile. Thus,
it is possible to calculate the value of temperature
difference between defective and defect-free areas:

AT(x,y,T)z Td(xiyst)_Tnd(xndaynds’c)'

The time topt, at which the value of AT(x, y, 1)
in this area of OT becomes the maximum, is called
the optimal time of testing:

ATy (%, 3, 1) = ALy gy (Top)-

As the size of the defect increases, its heating
rate decreases, which leads to a change in the shape

of the temperature profile. In particular, for deeper
defects the value of AT, ,, decreases and the time of
optimal observation t_,, increases.

opt

AT
o(x,,y,)

Figure 1 — Temperature profiles in different points of
thermogram

Quality of obtained thermograms significantly
depends on the characteristics of heat source and
instrument for recording the thermal field. Ensuring
uniform heating in practice is a difficult task, as the
nature of heating is influenced by imperfections of
the heat source and numerous external factors, such
as influence of external emitters, air movement
etc. Due to the anisotropy of -characteristics,
composite materials have different values of thermal
conductivity along the coordinate axes, which leads
to shape distortion of defects thermal imprints [12].
Therefore, task of testing process automating and
finding new or improving existing testing methods
that will provide high informativeness, reliability
and accuracy in such conditions is relevant.

Automated system of thermal defectometry
structure

Trends in the development of TNDT place the
following requirements on testing systems: a high
level of automation; high informativeness, speed
and productivity of testing; versatility and high
adaptability; high reliability of testing and accuracy
of defectometry. To meet these requirements, it is
necessary to use modern hardware and software. At
the same time, the general scheme of active thermal
testing remains unchanged. The object of testing is
exposed by a heat source. Inside a solid, thermal
energy is distributed in all directions due to the
diffusion process. In the presence of hidden defects,
the heat fluxes inside OT are redistributed, which
leads to the appearance of specific temperature
anomalies on its front and rear surfaces.
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The temperature field of OT is observed and registered
using an infrared camera. Temperature signals,
presented in the form of thermograms, are transmitted
to an automated data processing system on a PC to
detect defects and determine their parameters [13].
The choice of testing scheme, characteristics
of heat source and thermal imaging equipment
significantly affect the diagnostic result. The
efficiency of traditional methods of thermogram
sequence processing directly depends on these
factors. This reduces the versatility of testing systems
that use standard data processing algorithms. In
particular, changing the OT, heat source or thermal
imager in many cases leads to the need for a complete
recalculation of system parameters. The use of
modern methods of TNDT data processing on the
basis of deep learning allows you to add information
about new OT or take into account changes in testing
conditions without losing previous data. Because all
information about network experience is contained
in weights, retraining the system in the event of

types of defects will not necessitate changes in
further data processing algorithms.

Based on the analysis of existing schemes of
active thermal testing, it is possible to synthesize
the scheme of realization of automated TNDT data
processing system using an improved method of
determining the defects characteristics. This method
involves automated data analysis in three neural
network modules. The modular structure facilitates
construction and modification of the system
and increases overall efficiency of its work by
optimizing the settings of modules to solve specific
problems [14].

General block diagram of the automated system
for determining defects characteristics is shown in
Figure 2. The system is universal and can be used
for various testing schemes and regardless of the
characteristics of heat source, infrared camera or
OT parameters. The core of each neural network
module uses a deep feedforward network. Software
algorithms of the system are implemented in

inspection of new objects or the appearance of new NI LabVIEW environment.

| Software ]

Heater i Depth i

i estimation !

! P neural i

l i network i

i module v i

Olg;ct L Thermal i ;::;f;i{ : User i

g camera i g interface I

testing : classifier i
I

| Thickness 4 i

: estimation !

i > neural i

! network i

i module i

| |

Figure 2 — The structure of proposed automated active thermal defectometry system

Experimental studies of the proposed system

In order to conduct experimental studies of
the efficiency of automated thermal defectometry
system, two training and one test sample of multilayer
fiberglass were developed. This material is used as a
structural for manufacture of critical parts with high
strength. Developed samples are square plates of five
layers fiberglass. Total thickness of each sample is
5 mm, the thickness of one layer is 1 mm. The side
of the plate is 100 mm.

The scheme of the test sample is shown in
Figure 3. It contains hidden artificial defects of

three types: air cavities (white in Figure 3), paper
foreign inclusions (red) and aluminum third inclu-
sions (blue). Defects have a square shape, the size
of side is from 10 mm to 4 mm. Hidden artificial
defects are located at depths of 1 to 3 mm and have
different values of thickness: 1 mm, 2 mm or 3 mm.

The scheme of bilateral active TNDT was used
during the experiment. The power of infrared heat
source was 1 kW. To minimize the impact of thermal
radiation from the heat source on results, a steel
protective plate was used, which contains a hole and
a mount for OT. The plate with OT was located at
a distance of 100 mm from the heater. The distance
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from OT to the infrared camera is 400 mm. Testo
876 infrared camera was used to record a sequence
of thermograms.

100 mm

[_ o > ~
8mm m 100 mm/~ . ~/
| | » Y
6mm [ a
] [ o x [/

/[=lmm /=2mm /=3 mm

Figure 3 — Test sample scheme

The infrared camera and heat source are
controlled by operator in manual mode. Ambient
temperature during the experimental studies was
20 °C. At the beginning of experiment, the first
thermogram was registered OT at the initial time.
After turning on the infrared heater and putting it
to work, recording of thermograms begins. Time
interval between adjacent thermograms is 6s.
Heating and recording of the experimental sequence
of thermograms was carried out for 120 s. After the
thermograms recording procedure is completed,
the heater is switched off. Experiment resulted in a
sequence of 20 thermograms. Obtained results reflect
the process of OT thermal field changing at the stage
of heating.

Recorded thermogram sequences were exported
to a PC. The initial processing of thermograms was
carried out using proprietary Testo [RSoft software.
The resolution of the each obtained thermogram is
320%240 pixels. Thermograms are stored as arrays
of pixel temperatures. Based on the obtained results,
a set of initial data for further processing is formed.
The thermogram of test sample at the optimal time of
testing is shown in Figure 4.

€

55.0
50.0
45.0
40.0
35.0
30.0

25.0

>
-I-‘

Figure 4 — Thermogram of the test sample at optimal time
of testing

On the optimal thermogram it is possible to
distinguish visually 8 thermal prints of artificial
defects. Due to significant boundary effects,
information on bottom row of defects is lost. In
general, the OT thermogram is characterized by
uneven heating, which complicates its automated
processing by standard methods. Next, only the
region of interest (which is directly OT) is considered.

Figure 5a shows samples of temperature
profiles of the defect-free and defective areas for
different types of defects, lying at a depth of 3 mm.
An example of differential temperature signals from
artificial defects of the test sample, which are located
at different depths, is shown in Figure 5b.

—— defect-free area

30 f i
—air cavity

) 4 .
o 20 paper inclusion
= — aluminium inclusion__=~
10 e
% "16 20 42 55 68 8 94 107 120
Time, s
3
%) 2 _dl[' cavity on I mnrdepth
.. —— aluminium inc. on 2 mm depth
a1 paper inc. on 3 mm depth
0
94 107 120
Tlme, s
b

Figure 5 — Signals from the defect-free area and the defects
of test sample: a — temperature profiles at a 3 mm depth;
b — differential temperature signals at different depths

To form a set of training vectors for neural
network modules, two training samples were
developed and manufactured. The material, structure
and geometric dimensions of the training samples
correspond to similar parameters of test sample.
The procedure of training samples testing took place
according to the method and conditions described for
the test sample. Training samples contain artificial
internal defects in the form of air cavities, foreign
aluminum and paper inclusions with different
geometric dimensions, thickness and depth values.
In total, 6 artificial models with different parameters
were created for each type of defects.

As aresult, a set of temperature profiles vectors
with a total number of 6545 samples was formed.
This set includes 3605 examples of temperature
profiles from defect-free areas, 1414 profiles of
defects in the form of air cavities, 1019 profiles
of defects in the form of paper inclusions and
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507 profiles of defects in the form of aluminum
inclusions. Training dataset is characterized by a
certain unevenness, which arose due to the limited
number of training samples. The set of training
vectors was divided into training/validation/ test
subsets in the proportion of 70 % /15 %/ 15 %
respectively.

In order to process the experimental sequence of
thermograms of the test sample, neural networks of
appropriate modules for detection and classification,

Hidden Layer 1

Hidden Layer 2

determination of depth and thickness of defects
were created and trained. To solve these tasks, it
is advisable to choose the architecture of neural
networks for the detection and classification of
defects, which is shown in Figure 6. Architecture of
networks for determining defects depth and thickness
is similar. The input layer contains 20 neurons,
which corresponds to the number of thermograms in
sequence. The source layer contains 4 (according to
the number of classes) or 1 neuron.

W)

35

Output Layer
Output
4
15 4

Figure 6 — Architecture of defect detection and classification neural network

The Levenberg-Markard algorithm was used
as an optimizer. Loss function — MSE, metric —
MAE. According to the training results, MAE of
defects depth determination on the validation set was
0.028 mm, MAE of thickness determination was
0.019 mm.

The defects map, obtained by the results
of work of trained neural network module for
defects detection and classification, is shown in
Figure 7. All 12 artificial defects were detected
and unmistakably classified on the map. Defects
color on the map corresponds to their depth.

The shape and size of the defects are close to
true ones. In the image we can see some dots of
incorrectly classified temperature profiles, which
can be filtered by a median filter. In addition,
Figure 7 also shows binary defect maps obtained
using classical methods: optimal thermogram,
Fourier and wavelet analysis methods, principal
components analysis method (PCA), and dynamic
thermal tomography (DTT). Visually it is possible
to notice the increased efficiency of offered system
on the basis of deep learning in comparison with
classical methods.

From optimal
thermogram

Fourier analysis

DDT

Wavelet analysis

Proposed neural
network system

Figure 7 — The results of processing experimental data by traditional methods and using the proposed system
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Figure 8 shows the thermal tomogram obtained
by the DTT method and the image of test sample
internal structure, which was built on the results of
proposed system. At the defects boundaries there
are negative edge effects in the form of anomalous

200 0

a

emissions. This effect can be eliminated using
median filtering. In general, image of the internal
structure is reliable. Quantitative evaluation of
certain parameters and comparison of results with
traditional methods is given below.

b

Figure 8 — Results of processing experimental data: ¢ — thermal tomogram by DTT method; b — internal structure of

the OT (by proposed system)

Discussion

According to the results of quantitative
evaluation of effectiveness of defects detecting
in test sample by different methods (Table), it is
established that the best results are demonstrated

by developed automated system based on deep
learning. In particular, the use of neural networks
is only method by which it was possible to detect
all 12 artificial defects and automatically classify
them.

Table
Results of thermograms sequence processing by different methods
Criterion / method Thermogram Fourier Wavelet PCA DIT Neural
analysis analysis network

The number of detected p 10 7 1 3 12
defects
Defecf} classification 3 3 B 3 B 157
error, %
Tanimoto criterion, % 19.5 10.9 6.4 23.6 7.0 88.1
Depth estimation error, % - - — - — +3.2
Thickness estimation

- - - - - +3.5

error, %

The neural network module for defects detection
and classification allows to determine the size of
defects by their thermal imprints with the highest
accuracy among considered methods. Temperature
profiles were automatically classified with an error
of 15.7 %. The value of Tanimoto criterion [15]

at 88.7 % confirms the high reliability of constru-
cted defects map.

In considered conditions of testing the use of
deep learning is the only method that gives chance
to define defects depth effectively. Corresponding
neural network module allows to determine the depth
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of artificial defects of in test sample with a relative
error within £3.2 %. DTT method in a similar task
showed negative results, which makes it impossible
to assess the accuracy of determining defects depth.

Relative error in determining defects thickness
by neural network module is +3.5 %. Constructed
thermal tomogram of the internal structure of
sample is generally reliable, but at the boundaries
of some defects there are negative boundary effects.
Therefore, the thickness measurement must be
performed at the central points of thermal imprints
of the defects.

Consequently, the use of proposed automated
system based on deep learning demonstrates
the advantages of neural network modules over
traditional methods in all testing tasks. Due to the
high noise immunity and generalizing properties
of neural networks, the presence of non-uniform
heating has a weak effect on the efficiency of defects
detection in multilayer materials and the accuracy of
measuring their parameters.

Conclusion

In the paper offered to use the deep learning
approach for automation of thermal defectometry
of products from multilayer materials. The system
for implementation of this method consists of three
modules based on neural networks. Modules are
designed to solve tasks of defects classification
by type, determining their depth and thickness.
Experimentally established that developed automated
system allowed to detect and classify all artificial
defects embedded in the test sample, and to estimate
their depth with an error within +3.2 % and thickness
with an error up to £3.5 %. Defect maps constructed
as a result of processing experimental data using the
proposed system have a high reliability according to
Tanimoto criterion (88.1 %). In addition, the results
of comparative analysis show that the developed
system has an advantage over traditional methods in
qualitative and quantitative indicators.

The main direction for further research is to
optimize the architecture of neural networks of
relevant system modules by using the latest advances
in deep learning. In particular, it is proposed to
introduce normalization and dropout layers into
the network architecture, to change the training
optimization algorithm and activation function of
fully connected layers. An important task is also the
formation of a wide training samples dataset with

different defects and materials configurations. This
will expand the scope of developed automated system
without the need to retrain neural networks for each
individual task or type of multilayer material.
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