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Abstract

The aim of the work was a multivariate calibration of the concentration of unrefined sunflower oil,
considered as adulteration, in a mixture with flaxseed oil. The relevance of the study is due to the need
to develop a simple and effective method for detecting the falsification of flaxseed oil which is superior
in the content of essential polyunsaturated fatty acids to olive oil. A few works only are devoted to identi-
fying adulteration of flaxseed oil, unlike olive oil.

Multivariate calibration carried out using a model based on the principal component analysis, cluster
analysis and projection to latent structures of absorbance spectra in UV, visible and near IR ranges. Calibra-
tion uses three methods for spectral variables selection: the successive projections algorithm, the method
of searching combination moving window, and method for ranking variables by correlation coefficient.

The application of the successive projections algorithm, ranking variables by correlation coefficient
and searching combination moving window makes it possible to reduce the value of the root mean square
error of prediction from 0.63 % for wideband projection to latent structures to 0.46 %, 0.50 %, and 0.03 %,

respectively.

The developed method of multivariate calibration by projection to latent structures of absorbance spectra
in UV, visible and near IR ranges using the spectral variables selection by searching combination moving
window is a simple and effective method of detecting adulteration of flaxseed oil.

Keywords: spectral analysis, principal component analysis, projection to latent structures, spectral

variables selection.
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LICJ'ILIO pa60T1>1 SABJIAJIaCb MHOTOIIapaMeTpuiCCKasn KaJ'II/I6pOBKa KOHICHTpAanuu HCpa(i)I/IHI/IpOBaHHOFO

MOJICOTHEYHOT'0 Maciia, pacCMaTpuBaeMoro B kauecTBe (ajbcudukaTa IbHIHOTO Macia. AKTyaIbHOCTb UC-
cienoBaHus 00ycIoBIeHa HEOOXOAUMOCTBIO pa3padOTKU MPOCTOro M 3PPEKTUBHOTO METOAa OOHAPYKEHHUS
¢anscuduKanny JbHIHOTO Macia, MPEBOCXOSIIETO IO CONEPKAHNIO HE3aMEHUMBIX MOJMHEHACHIILICHHBIX
JKUPHBIX KHCJIOT OJMBKOBOE MAciio, BBISIBICHHUIO MOJACIOK KOTOPOro B OTJIMYKE OT JIBHSIHOTO MOCBSIICHO
00JIBIIIOE KOJMYECTBO PadoT.

MHoronapaMeTprieckas KaTuOpoBKa MPOBOAMIACH C IIOMOIIBIO MOJEH, OCHOBAaHHOM Ha METO/IE TJIaB-
HBIX KOMIIOHEHT, KIIaCTEPHOM aHaIN3€ U MPOCKLINHU Ha JaTEHTHBIE CTPYKTYPBI CHEKTPOB ONTHYECKOM ILIOT-
HocTH B Y®-, BuanMom u OnmmxkaeM MK nuanazonax ¢ mpuMEHEHHEM TPeX METOAOB BBIOOPA CIIEKTPaIbHBIX
MEPEMEHHBIX: METO/a MOCIIeI0BATEIILHOIO MPOCUUPOBAHUS, METOJa MTOMCKa KOMOMHALIMU CIOBUTAIOIINXCS
OKOH M METO/1a PAaH)KUPOBAHMS IEPEMEHHBIX 10 KO3()(HUIIMEHTY KOpPEISILUH.

[TokaszaHo, 4TO IPUMEHEHHE METOJIOB MOCIEAOBATEIHLHOTO MPOCIMPOBAHUS, PAHKHUPOBAHUS MIEPEMEH-
HBIX 110 KOA(QQHUINUEHTY KOPPEJSLIUH U IOMCKAa KOMOMHAIIMN CABUTAIOLINXCS CIIEKTPATBbHBIX OKOH MO3BOJISI-
€T YMEHBILINTh BEIMYMHY CPETHEKBAIPATUIHOTO OTKIOHEHHS KamuOpoBKH ¢ 0,63 % 11t MIMPOKOMOIOCHON
MIPOEKLINHU Ha JaTeHTHbIE CTPYKTYpHI 10 0,46 %, 0,50 % u 0,03 %, cOOTBETCTBEHHO.

Pa3paOoTaHHbBI METOA MHOTONApaMeTPUUYECKOM KaIMOPOBKH C MOMOMIBIO MPOCKIMU HA JIATCHTHBIC
CTPYKTYPBI CIIEKTPOB ONTHYECKON IIOTHOCTU B Y @-, BuanMoM u OmmxaeM UK nuanazonax ¢ npuMeHeHHeM
BBIOOpA CIIEKTPAIBbHBIX IEPEMEHHBIX Iy TEM IMOMCKa KOMOMHAIIMN CABUTAIOIIUXCS OKOH SIBJISIETCS] IPOCTHIM U
3¢ PEKTUBHBIM CPEACTBOM OOHApYX EHUS Paabcu()UKALMH JIbHSIHOTO Maca.

KuroueBsble ci1oBa: crieKTpajabHBIN aHAJIN3, METO/I IIaBHBIX KOMIIOHEHT, TPOEKIUS Ha JJATEHTHBIE CTPYKTYPHI,
BBIOOP CIIEKTPATBHBIX [IEPEMEHHBIX.
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Introduction

Food adulteration is a serious problem around
the world. Products of animal and vegetable
origin with a high content of fat are most subject
to falsification. Meat, fish, oils, dairy products,
etc. account for almost 68 % of adulterated food
products [1]. Vegetable oil is one of the most
widely demanded foods. Olive oil, which is wrongly
considered the most beneficial for human health,
is the most often adulterated vegetable oil. A large
number of studies are devoted to the detection of
falsification of olive oil using optical spectroscopy
methods such as fluorescence and UV and visible
spectroscopy [2], Raman spectroscopy [3], combi-
nation of near and mid IR spectroscopy [4], etc. But
olive oil is inferior to flaxseed oil in the content of
essential polyunsaturated fatty acids, among which
the content of alpha-linolenic (omega-3) acid can
reach 64 %. Only a small amount of studies has
been focused on detecting flaxseed oil adulteration.
For example, Fourier spectroscopy was used to
detect the falsification of flaxseed oil with olive
oil [5] and mid-IR spectroscopy was used to detect
the adulteration of flaxseed oil by soybean and
sunflower oils [6].

Earlier [7], we carried out a multivariate
calibration of the concentration of unrefined
sunflower oil, considered as adulteration, in a
mixture with flaxseed oil using a model based on
the principal component analysis (PCA) [8], cluster
analysis and projection to latent structures (PLS) [9]
of absorbance spectra in UV, visible and near IR
ranges. To further reduce the root mean square error
of prediction (RMSE,), in this work we compared
three methods for spectral variables selection: the
Successive Projections Algorithm (SPA) [10], the
searching combination moving window interval
PLS (scmwiPLS) and the method using correlation
coefficients ranging [11].

The objects of the study were specially prepared
samples of binary mixtures of unrefined sunflower
and flaxseed oils with a percentage from 0 to 100 %.
Absorbance spectra were measured on a Shimadzu
UV-3101PC spectrophotometer with a step of
I nm in two ranges: from 335 to 690 nm and from
1130 to 2200 nm with a slit width of 1 nm and
3 nm, respectively. The interval 1698-1766 nm,
corresponding to the first overtone of the C—H
vibrations of the -CH,— group [12, 13], is very noisy,
therefore, it was not taken into account in further
consideration.

Spectra processing and multivariate
calibration

Before applying the PCA method, it is
necessary to form a rectangular matrix of spectra
of the studied samples. In this matrix rows are
samples, columns are spectral variables. According
to the dependence of the total explained variance
of the spectral data on the number of principal
components, it was determined that 99.7 % of the
total variance is described by the first principal
component. Using the linear approximation of the
scores to the first principal component, samples that
deviate significantly from the general dependence
are identified as outliers. These samples correspond
to 10 %, 25 %, 30 %, 60 %, 65 %, 70 % and
72.5 % concentrations of sunflower oil and were
removed from further consideration.

To create the PLS model, the remaining samples
were divided into training sampling and test one by
the hierarchical cluster analysis in the Euclidean
space of the first principal component of absorbance
spectra. For a planned experiment, this method
gives smaller values of RMSE,; [14] compared to
uniform partitioning by a calibrated parameter or
the frequently used Kennard—Stone algorithm [15].
The values of scores to the first principal component
were aggregated to 6 clusters. 6 spectra with scores
that were closest to the centers of the clusters
were selected to the test sampling. The remaining
18 samples constituted the training sampling. Thus,
75 % of the samples are used to build the model and
25 % to validate it.

After the stage of dividing the samples into
training and test samplings, one can proceed to
calibrating the content of sunflower oil in a mixture
with flaxseed oil using a wideband multivariate
PLS with all 1345 spectral variables. Figure 1
shows that the optimal number of latent structures
is 6, since RMSE;,, in this case is minimal and equal
to 0.63 %.

Due to the collinearity of spectral data and
possibility of low signal-to-noise ratio for individual
spectral variables and even in rather wide spectral
intervals, the use of the entire measured spectral
range may not be optimal for calibration accuracy.
To improve the quality of the multivariate model,
it is advisable to reduce the number of variables
taken into account in the simulation. The spectral
variables selection is an important step in improving
the quality of calibration and stability of the model
with possible verification using additional samples.
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Figure 1 — Dependences of the RMSE.y, (root mean
square error of cross-validation) for the training sampling
and RMSE, for the test sampling for the wideband PLS

We consider three following methods for
spectral variables selection. The first method is
based on ranking the variables using the correlation
coefficients between spectral counts and the
calibrated parameter found for wideband PLS
with six latent structures. In this case, the spectral
variables are excluded from the multivariate model
one by one in accordance with the decreasing
correlation coefficient. RMSE, is determined
at each step. The minimum value of RMSE,
specifies an optimum set of spectral variables
that corresponds to the best model for the applied
method. Figure 2 shows that this minimum value
of RMSE; =0.50 % is achieved when removing
1106 spectral variables for 239, taken into account
in the multivariate model.

The second considered method is SPA. At
the first stage of algorithm fulfillment, for the
1345 variables available in our case, a set of
1345 ordered sequences of spectral variables
is constructed, the first elements of which are
different. In the multidimensional space of
spectral variables the remaining 1344 variables
are projected onto the space orthogonal to the
selected first variable. The largest projection
value determines the second in order variable.
Similarly, all the following spectral variables in
considered sequence are ranked by projections
on the subspace orthogonal to the subspace of
the variables already selected. For each element
of the generated set of ordered sequences of
spectral variables, PLS is constructed starting
with the first ten spectral variables for certainty,
and ending with a set of all 1345 variables.

For every number of spectral variables taken into
account in the multivariate models for variables
sequence considered, the optimal number of latent
structures was selected based on the minimum
value of RMSE,. The global minimum of RMSE,
was found from 1795575 = 1345x%1335 values.
Here 1345 is the number of elements in the set of
ordered sequences of spectral variables and 1335
is the number of PLS models with an increase in
the number of spectral variables from 10 to 1345.
Based on the global minimum of RMSE,; of the
sunflower oil concentration in a binary mixture of
vegetable oils, the required sequence of spectral
variables was determined, which ensures maximum
calibration accuracy for variables selection method
applied. In our case, the required sequence of
spectral variables began with wavelength of
1781 nm and consisted of only 14 variables. It is
rather small number of selected variables and its
further reduction is impractical. Often the final
stage of SPA execution aims to reduce number
of selected variables, taking into account the
correlation coefficient of the spectral variables and
the calibrated parameter.

2.0 -
1.6 1

1.2 1

RMSE,, %

0.8 1

0.4 T T T r r T
200 400 600 800 1000 1200

Number of extracted spectral variables

Figure 2 — Dependence of the RMSE, on the number
of extracted spectral variables in ranking method using
correlation coefficients between spectral counts and
calibrated parameter

The third used method is searching combination
moving window interval PLS (scmwiPLS) [14]. In
contrast to the two previous methods, the described
method operates not with individual spectral
variables, but with a continuous interval or, as it is
often called in multivariate analysis, a window [16].
The algorithm for applying this method is as follows.
First, you need to select the width of the windows
that shift along the spectrum. In the scmwiPLS
modification we use, the number of spectral variables
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in window exceeds the number of latent structures
by one in order for PLS to be able to reduce the
dimension of the variable space by at least one. Note
that, unlike SPA, the number of latent structures (6 in
our case) does not change during the whole algorithm.
Second, the spectral position of the first window
should be determined. It shifts across the entire
spectral range and is fixed in the place where RMSE,
of PLS model based on selected spectral variables
is minimal. Third, it is necessary to determine the
position of the added windows until they fill the
entire measurement range. Subsequent windows are
similarly shifted within the entire spectral range of
measurements and are alternately combined with the
selected ones, provided that the minimum value of
RMSE;, is reached for the combined set of windows.
And finally the search for the minimum value of
RMSE,, depending on the number of windows,
determines the desired set of spectral variables for
scmwiPLS. Figure 3 shows the dependence of the
RMSE, on the number of combined windows in
scmwiPLS. The minimum root mean square error
of prediction equals 0.03 % and corresponds to the
combination of 38 windows with 7 variables or 266
spectral variables.
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Figure 3 — Dependence of the RMSE, on the number of
combined windows in scmwiPLS

Figure 4 shows dependence of concentration
of sunflower oil predicted by the scmwiPLS on
its measured concentration in a binary mixture
of sunflower and flaxseed oils for training and
test samplings. It indicates the high quality of the
multivariate model with spectral variables selection,
which can be characterized by the value of the
residual predictive deviation RPD. RPD is equal to
the ratio of the standard deviation of the calibrated
parameter and RMSE,. RPD exceeds 1000 for the
described scmwiPLS model.

100 - o
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S 40 o
3 -

Q . . .
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0+
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Figure 4 — Concentration of sunflower oil predicted by

the scmwiPLS vs measured concentration in a binary
mixture of sunflower and flaxseed oils

Figure 5 shows the spectral variables selected
using the three investigated methods and the example
of the absorbance spectrum of sunflower and flaxseed
oils mixture.

3.0 A o  SPA-PLS o
’5 ] —  Correlation-PLS ¢
: e scmwiPLS g

2.0
1.5 4i

Absorbance

1.0 1
0.5 1

.
.
.
.

1200 1400 1600 1800 2000 2200

Wavelength, nm

0.0 -

400 600

Figure 5 — Absorbance spectra of the mixture of sun-
flower (12.5 %) and flaxseed (87.5 %) oils and spectral
variables selected using the three investigated methods

Spectral variables selection using the ranking
of correlation coefficients (239 variables) and the
SPA method (14 variables) allows reducing the
value of the root mean square error of prediction
of sunflower oil concentration from 0.63 % for
wideband PLS to 0.50 % and 0.46 %, respectively.
These selections are advisable for classical
spectroscopy, since the variables selected by
both methods are close to the spectral features
of the studied objects. The spectral variables
selection by scmwiPLS method (266 variables)
is less consistent with classical spectroscopy,
since a significant part of the selected variables
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does not describe the characteristic features
of the studied spectra, but allows RMSE,
to be reduced by more than an order of magnitude
to 0.03 %. Thus, it can be noted that an increase
in the calibration accuracy is achieved by using a
formal method of variables selection, a feature of
which is the use of narrow spectral intervals instead
of separate wavelengths.

Conclusion

On the example of the calibration of the
concentration of unrefined sunflower oil, considered
as a falsified flaxseed oil, it was confirmed that
the spectral variables selection is a necessary and
important part of multivariate models to improve
the accuracy.

It was found that from the considered methods
applied to the projection to latent structures of the
absorbance spectra for calibrating the concentration
of sunflower oil in a mixture with flaxseed oil, a
smaller root mean square error of prediction (0.03 %)
is achieved for searching combination moving
window method in comparison with the successive
projection algorithm (0.46 %) and the ranking
of spectral variables by the correlation coef-
ficient (0.50 %).
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