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Abstract

Yttrium aluminium perovskite YAIO; (YAP) crystal, doped with rare-earth ions, has been extensively
studied as a diode-pumped laser host material. The wide interest to rare-earth ions doped YAP crystals is
explained by its good thermal and mechanical properties, high natural birefringence, widely used Czochralski
growth method. The aim of this work was to study the Yb’":YAIO, crystal as an active medium for high
power mode-locked laser.

Yb**-doped perovskite-like aluminate crystals have unique spectroscopic and thermooptical properties
that allowed using these crystals as an active medium of high power continuous wave (CW) and mode-
locked (ML) bulk lasers with diode pumping.

In our work spectroscopic properties of Yb:Y AP crystal and laser characteristics in CW and ML regimes
are investigated. Maximum output power of 4 W with optical-to-optical efficiency of 16.3 % and 140 fs
pulse duration have been obtained for Yb:YAP E//c-polarization with 10 % output coupler transmittance.
Tunability range as wide as 67 nm confirms high promise of using Yb:Y AP crystal for lasers working in wide
spectral range.
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VK 621.373.826

BbICOKOMOIIHBIN JIa3ep HA KPpHCTAJLIE Yb3+:YAlO3,
padoTaromuii B pes;kuMe CHHXPOHHM3ALUH MO/

HA OCHOBE IOJIYIIPOBOJHMKOBBIX 3epKaJl

¢ HACBIIAIIHMMCSH NOII0THTEIeM

AJekcanap PyIleHKOBl, Bukrop Kncenbl, AHaTtoauii HcheBnql, Kapun OBaHGCLﬂHZ,
Awor Ierpocsn’, Hukooaii Kynemos'

1 . . . .
Llenmp onmuyeckux mamepuanos u mexnoio2uil, beropycckutl HaYUOHAIbHBIL MEXHUYECKUL YHUBEpCUmen,
np-m Hesasucumocmu, 65, Munck 220013, Benapyco

2 . .
Hncmumym ¢huzuueckux uccredosanuti Hayuonanohoii akademuu nayx Apmenuu,
0203, Awmapax-2, Apmenus

Hocmynuna 04.08.2020
Hpunama k neuamu 15.09.2020

Kpucranns! urtpuii-amomunuesoro neposckura YAlO; (YAP), nerupoBaHHble HOHAMH PEJKO3EMEIb-
HBIX 2JIEMEHTOB HHTEHCUBHO M3YYaJIMCh B KAUECTBE aKTUBHBIX CPEJl JIa3epOB ¢ AUOAHOM Hakaukoil. IHTepec
K JJaHHBIM KpUCTaJJIaM 00YyCJIOBJIEH UX BHICOKUMH TEIIIOPU3NICCKUMH U MEXaHUUECKUMH CBOHCTBAMH, BbI-
COKHUM JIBYJTy4eIPEIOMIIEHHEM, BO3MOKHOCTBIO POCTa IO IMIMPOKO PacHpocTpaHEHHOMY MeToay Hoxpasb-
ckoro. Llenbio nanHoi paGoThl GbLI0 H3yuenne kpucTamia Yb* Y AlO, B kauecTBe akTHBHO# cpeJibl Tasepa
C BBICOKOH cpeHel BBIXOAHOW MOIIHOCTBIO, pab0TaIOMIEro B PEKUME CHHXPOHU3ALUN MO/,

Kpucrannst YAIO,, nerupoBaHHble TPEXBaTEHTHBIME HOHAMU UTTEPOHS UMEIOT YHUKAJIBHbBIE CIIEKTPO-
CKONMYECKUE U TEeIUIO(PU3NUECKUE CBOMCTBA, UTO MO3BOJISIET UCIOIB30BATh JAHHBIC KPUCTAJIIBI B KAUECTBE
AKTUBHBIX CpEJl JIa3ePOB C BBICOKOM CpeHEH BBIXOJHOW MOIIHOCTBIO W JTMOJHON HaKauyKoH, paboTarommx
B peKMMax HEMPEpHIBHON reHepalvy U MaCCUBHOM CHHXPOHU3ALUU MO/,

B pabote nccienoBanbl ClIEKTPOCKONMUYECKHE XapaKTEPUCTHKH KpucTamia Yb:YAP, a Taxxke BbIxon-
HBIC XapaKTEPUCTHKH JIa3epOB HAa OCHOBE JAHHOTO KpHCTa/ula, paboTaloUMX B peXHMax HENpepbIBHON
reHepalMl M IAacCUBHOW CHUHXpoHM3auumu MoJ. CpenHsis BbIXoAHas MoliHocTe 4 BT ¢ onTtnueckoit
s dexTnBHOCTBIO 16.3 % M qnuTenbHOCTHI0 MMITyJibea 140 de monmyyena ms E//c-nonspuzauuul Ipu Opo-
MMyCKaHWH BbIXOAHOTO 3epkana 10 %. [Inana3on nepecTpoiiku 67 HM MOJATBEPKAAET BEICOKHE EPCIEKTUBEI
MCTIONIb30BaHMs Kpuctaia Yb:Y AP B kauecTBe akTHBHOW Cpebl JIa3epoB, pabOTAIONIMX B ITUPOKOM CIICK-
TpaJIbHOM JIHara3oHe.

KawueBbie cioBa: ja3ep ¢ CHHXpPOHHU3AIMEed MOJ, HOHBI WTTEepOUs, JMOJHAS HAKadKa, KPUCTAaJIbI
WUTTPUEBOTO AITIOMUHATA.
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Introduction

Yttrium aluminium perovskite (YAP) crystal,
YAIO,, doped with rare-earth ions, has been
extensively studied as a diode-pumped laser host
material. Numerous impressive results were reported
for Nd*-doped YAP crystal. Among them 100 W
output power at 1079 nm and 18.3 W at 1341 nm
were obtained in diode-side-pump module [1].
6.2 W laser output with a slope efficiency as high as
27.2 % at 1341.4 nm were demonstrated in a compact
plane-concave cavity [2]. Laser emitting at 1378 and
1385 nm with power of 800 mW was reported in
a folded cavity with prism inserted [3] and second
harmonic generation at 536 nm was obtained with an
LBO crystal inside the cavity [4]. Intensive studies
were also made with Tm** and Ho**-doping. 730 mW
of laser output power with 40.3 % slope efficiency
were obtained over the range 1965-2020 nm with
singly Tm-doped aluminate [5] and as high as 8.36 W
at 2120 nm [6] and 9.3 W at 2044 nm [7] with slope
efficiencies 35.7 % and 42.5 %, correspondingly,
were demonstrated in Tm and Ho co-doped YAP
crystal. Furthermore efficient Pr-doped YAIO; laser
operation under diode pumping was recently reported
emitting in the near-infrared spectral range [8].

The wide interest to rare-earth ions doped
YAP crystals is explained by its good thermal and
mechanical properties similar to those of YAG, but
growing faster and anisotropic [9]. Previously thermal
conductivity of undoped YAP crystal was reported
to be close to 11 W/[m'K] [9,10]. Lately more
modest values of 7-8 W/[m'K] were published [11].
Nevertheless they remain two times higher then those
of tungstate crystals [12]. YAIO; is a biaxial crystal
and belongs to orthorhombic space group [9]. Its high
natural birefringence dominates thermally induced
one in lasers and leads to overcoming depolarization
losses at high average powers [13]. It results in a very
high polarization degree of the laser emission under
different levels of pump power which is advantageous
for non-linear frequency conversion [14], efficient
modulation loss in Q-switch lasers [6] and other
applications where linearly polarized light is necessary.

In this work we present the experimental study
results of high power passively mode-locked laser
based on yttrium aluminium perovskite crystal doped
with Yb*" ions.

Crystal growth

Single crystals of Yb:YAP can be grown
by several growth techniques [15-20] among

which Czochralski is the most usable for practical
applications.

For this study Yb:YAP crystals were grown by
Czochralski method using Y,0;, Yb,0; and crystal-
line sapphire as starting oxides of at least 99.99 %
purity and seeds oriented along the b axis. The melts
were corresponding to stoichiometric compositions
Y, Yb AIO, (x=0-0.03). The growth melts (x = 0—0.03)
were held in iridium crucibles (40x5x40 mm®)
and inductively heated under a pure Ar atmosphere.
The pulling and rotation rates were 2.5 mm/h and
35 rpm. The grown boules are 15 mm in diameter and
30-40 mm long, transparent but some of them of a
yellow-brown shade.

Spectroscopy

Polarized absorption spectra of Yb**(2 at.%):YAP
(corresponding  ytterbium  concentration  was
4.02x10% crn73) at room temperature were regis-
tered by a Varian CARY-5000 spectrophotometer.
Absor-ption cross-section spectra for three light
polarizations parallel to the a, b and c crystallo-
graphic axes are shown in Figure 1.

30-
o Yb(2.0at.%): YAl
: bOat%):yAlO,
o 251 - — ElIb
&
2 151
Q
£ 10-
a
é S /)
2 2N,

900 950 1000 1050
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Figure 1 — Polarized absorption spectra of Yb3+:YAlO3
crystal (the spectra were obtained for Y (2 at.%):YAIO;)

Strong absorption is found for E//c light
polarization with the peak absorption at 978.2 nm
of about 25 cm™ ' and spectral bandwidth FWHM of
4 nm.

It is well known that radiation trapping strongly
affects the measured lifetime of Yb-doped materials
because of significant overlap of the absorption and
emission bands [21, 22]. The comparatively high index
of refraction of YAP (n.=1.914 for A= 1040 nm)
also increases the probability of reabsorption even
in optically thin samples because of the total internal
reflection. Thus the special methods discussed in the
literature [21, 22] should be used to determine the
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luminescence lifetime accurately. In our experiments
we used a fine powder of Yb:YAP crystal immersed
in glycerin. The diameter of the powder particles was
measured to be approximately 3040 pum, several times
lower than absorption length of the most heavily doped
Yb*'(8 at.%):YAP crystal (97 um at 978.2 nm). The
Yb ions contents in the samples were 1.5, 2, 3 and
8 at.%. The samples were excited by 20 ns pulses at
wavelength of about 978 nm and luminescence kinetics
were registered with the use of a 0.3-m monochroma-
tor, fast Ge-photodiode with a rise time of < 20 ns and a
500 MHz digital storage oscilloscope. All the samples
exhibited single exponential decays (see Figure 2).
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Figure 2 — Kinetics of luminescence decay for
Yb(1.5 at.%):YAP (a) and Yb(8 at.%):YAP ()

Starting from certain powder content, the lifetime
remained constant despite further dilution (Figure 3),
thus indicating that reabsorption effects became
negligible. Emission lifetime for 8§, 3, 2 and
1.5 at.% Yb-doped crystals was measured to be about
510 £ 20 ps that indicates a weak influence of the
luminescence concentration quenching. Presented
values are in good agreement with the previously
obtained data [23].

The stimulated-emission (SE) cross sections
were calculated by use of the modified reciprocity

method in which it is not necessary to know the
Stark level structure of the Yb*" manifolds (*Fs, and
2 .
Fo) [24]:

3-exp(—he/(kTL))

%= o M), (1)
’ 8nn21m . -c% 4B (Wexp(—he/(kThpan B
where 1, , is the radiation lifetime of an active

rad

center; ¢ is the light velocity; /4 and & are Planck and
Boltzmann constants, respectively; T is the crystal
temperature; n is the refractive index of a crystal;
a and B denote the polarization state; and o is
the ground-state absorption cross section.
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Figure 3 — Measured lifetime for different weight content
of Yb:YAP crystalline powder in glycerin suspension for
YAP with different Yb** concentrations

The SE cross section spectra calculated with this
method are presented in Figure 4.
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Figure 4 — Polarized absorption and stimulated emission
cross-section spectra of Yb’":YAIO; crystal
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The most intensive SE cross-section band at
999.2 nm has peak value of about 3.13 x 102 cm?
for E//c-polarization. Such a high value is very
suitable for mode-locked and actively Q-switched
laser operation.

Moderate SE cross-section values (0.4—
1.1x10 %" ¢cm?) are observed for E//b- and E//c-
polarizations in wavelength range 1005-1030 nm
where the spectra are smooth.

Continuous wave laser experiment

For laser operation the most interesting
polarization states in the crystal are E//c and
E//b (¢ and b are crystallographic axes) due to high
stimulated-emission cross sections values.

For a continuous wave laser experiments a set up
with X-folded cavity design was used (see Figure 5).
It consisted of two curved mirrors M1 and M2 and
two plane mirrors: OC and HR.

HR

Pump beam
M2~25

mode -
Pump chusmg
O optics
Figure 5 — Experimental setup of continuous wave diode-
pumped Yb:YAP laser: HR —highly reflective mirror;
OC —output coupler; P —prism; MI, M2 —concave
mirrors; AE — active element; LD — laser diode

The calculated TEM,, mode diameter in the
crystal was about 100 um. As a pump source, a
multiple single emitter InGaAs fiber-coupled laser
diode (@105 pum, NA = 0.15) with a maximum output
power of about 25 W was used. An "off-axis" pump
layout was used for longitudinal pumping of the active
element (see Figure 5). This pump arrangement was
successfully tested in our previous work [25-26] and
the main advantage of such a pump scheme is that
all the cavity mirrors have highly reflecting coating
at 900-1100 nm. The pump light was formed by a
set of lenses into the spot with a diameter of about
100 um (1&%). A 2 mm long Yb*'(2 at.%):YAIO,
crystal was used as a gain medium. The crystal was
a-cut to provide E//b and E//c polarized laser output.
It was a slab with dimensions 2(a) x 5(b) % 1.5(c) mm’;

both 5x2 mm? lateral faces were maintained at 15 °C
by means of copper plates (indium foil was used
to improve thermal contact) and thermo-electrical
cooling elements with water-cooled heat sink, while
1.5x 5 mm”* working faces were antireflection coated
for pump and laser radiation.

The dependencies of the laser output power
on the absorbed pump power for E//b— and E//c—
polarized outputs and different OCs are shown in
Figure 6. Absorbed pump power was real-time
measured during the laser action.

81E/c Toc=10%
7] n=76.7%
2 6 A=
§ 59 Toc=20%
3 44 n=75.3% Toc=5%
g 3] %,=998.7nm n=64.2%
& A =1025.7nm
5 24 0
@) 1] »n
0-—4‘!‘.’.. —_——
0 2 4 o6 8 10 12 14
Absorbed pump power, W
a
61E//b Toc=10%
5 n=60.5%
i N 2,=1012.1nm Toc—s%
3 n=51.8%
2 31 %,=1012.6nm
2, . .
ERY
%‘ Toc=20%
5 1- n=59.2%
0 2 4 6 8 10 12 14
Absorbed pump power, W
b

Figure 6 — CW laser performance of Yb:YAP crystal for
different polarizations and output coupler transmittances

The maximum CW output power of 7.6 W
at absorbed pump power of 13.6 W with slope
efficiency of 64.2 % was demonstrated for E//c
polarization with 5 % OC transmittance (Figure 6a).
With output coupler transmission of 10 % and 20 %
the laser output power slightly decreased to 7.3 W
and 6.0 W, respectively, while the corresponding
slope efficiencies increased to 76.7 % and 75.3 %.
Similar output powers were demonstrated for E//b
laser output (Figure 6b). With 10 % output coupler
transmittance 5.9 W of output power was obtained
at 11.7 W of absorbed pump power with 60.5 %
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slope efficiency. Output powers of 5.7 W and 3.7 W
with slope efficiencies of 51.8 % and 59.2 % were
obtained for 5 % and 20 % OCs, respectively.

Wavelength tunability of the Yb:YAP laser
was investigated during CW laser experiments. For
this purpose prism was inserted into the cavity. The
dependency of average output power (in normalized
units) from the central wavelength of the Yb:YAP
laser is shown in the Figure 7.

1.0 E

o g h

= 0.8 "'\‘

=

2 0.67

= Ellc

>

= 0.44 Toc=1.5%

=

[}

g 02 /'\
0 "/ ; : ; .
980 1000 1020 1040 1060

Wavelength, nm

Figure 7 — Tunability curve of Yb:YAP laser with output
coupler transmittance 1.5 % for E//c-polarization

Tunability range as wide as 67 nm (985.6—
1052.7 nm) was demonstrated with output coupler
transmittance of 1.5 %.

Mode-locked laser experiment

For the mode-locked laser experiment the same
crystal was used as for CW one. Schematic of the
experimental setup is shown in Figure 8.

SESAM TFP Out.

oC

Pump mirror

Pump beam
M2-25

Cavity mode
M?~1.1

AE

Pump focusing
optics

Figure 8 — Schematic of the Yb:YAP mode-locked
laser: SESAM —semiconductor saturable absorber
mirror; TFP —thin film polarizer; OC — output coupler;
GTI - chirped mirrors; M1, M2 —concave mirrors;
AE — active element; LD — laser diode

InGaAs-based SESAM with modulation depth
of about 4.0 % was used in the experiments. The
SESAM based on quantum wells separated by nano-

structured barriers was grown by molecular beam
epitaxy (MBE) technique over the semi-insulating
GaAs substrate of (001) orientation. The crystallinity
of each layer was controlled via reflection of high
energy electrons diffraction (RHEED technique).
The number of quantum wells, their thickness and
the concentration of the ternary alloy were chosen
to match the requirement on the saturable absorption
modulation depth. The recovery time shortening was
performed by the barriers separation into the thinner
layers via the insertion narrow band gap material. The
design ofthe SESAM described in [27]. The measured
reflectivity spectrum of the SESAM is presented in
Figure 9. Used SESAM enabled to support mode-
locking in the spectral range from 1000 nm to about
1050 nm. The result of the pump-probe testing of
the SESAM with modulation depth of 4 % is shown
in Figure 10. The saturation energy fluence of the
SESAM was measured to be about 70—120 pJ/cm?.

100+

e}
[}
|

Reflectivity, %
(o]
<

1000 1020 1040 1060

Wavelength, nm

70 .
960 980

Figure 9 — SESAM reflectivity spectrum with modulation
depth 4 %

=0.3ps;
3.2ps

Tfast

slow

-AOD

0 Pt
10

15 20 25 30
Time, ps

Figure 10 — "Fast" (0.3 ps) and "slow" (3.2 ps) recovery
times of the SESAM

Stable mode-locked operation of Yb*'(2 at.%):Y AP
laser was obtained only for OCs with 5% and
10 % transmittance. The maximum output power
of 4 W with optical-to-optical efficiency of 16.3 %
was obtained with 10 % OC for E//c-polarization.

184



Tpubopwl u memoowvl usmepenui
2020.-T. 11, Ne 3. - C. 179-186
Alexander Rudenkov et al.

Devices and Methods of Measurements
2020, vol. 11, no. 3, pp. 179-186
Alexander Rudenkov et al.

Pulses with 8 nm (see Figure 11) full width at half
maximum (FWHM) obtained at 1009.7 nm central
wavelength resulting in 140 fs pulse duration (see
Figure 12) with time-bandwidth product of about
0.32 assuming Sech?” pulse shape.

1.0+
Toc=10%
0.8 l0=1009.7 nm
g AA=8.0 nm
5 0.6
s
2 0.41
'3
=]
% 0.2
0 . . L
980 1000 1020 1040

Wavelength, nm

Figure 11 — Spectrum of the Yb:YAP (£//c) mode-locked
laser for 10 % OC

1.0

T=1.54*140 fs
0.8

0.6

0.4

Intensity, arb.unit.

0.2

200

0
Time, fs

400 -200 400
Figure 12 — Autocorrelation trace of the Yb:YAP (E//c)

mode-locked laser pulses for 10 % OC

Output power of 24 W with optical-to-
optical efficiency of 10.7 % obtained with 5 % OC
transmittance. Spectral width of 7.6 nm at 1021.9 nm
central wavelength (Figure 13) was demonstrated
resulting in about 150 fs pulse duration (Figure 14)
with time-bandwidth product of about 0.33 assuming
Sech? pulse shape. The pulse repetition frequency

was around 70 MHz.
1.04 Toc=5%
k0=1021.9 nm

087 AA=7.6 nm

0.6

0.4+

Intensity, arb.unit.

0.21

1020 1040

Wavelength, nm
Figure 13 — Spectrum of the Yb:YAP (£//c) mode-locked
laser for 5 % OC

1000

1.0+

T=1.54*150 fs
0.8

0.6

0.4+

Intensity, arb.unit.

0.2

0.0

0
Time, fs
Figure 14 — Autocorrelation trace of the Yb:YAP (E//c)
mode-locked laser pulses for 5 % OC

400 -200 200 400

Conclusion

In conclusion, Yb:YAP bulk crystal as a gain
medium for high power mode-locked lasers was
investigated in our work. Maximum output power
of 4 W with optical-to-optical efficiency of 16.3 %
and 140 fs pulse duration have been obtained for
Yb:YAP E//c-polarization with 10 % output coupler
transmittance. Tunability range as wide as 67 nm
confirms high promise of using Yb:YAP crystal for
lasers working in wide spectral range.
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