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The design of a gravi-inertial sensor with an elastically suspended sensing mass exhibiting a maximum
sensitivity and minimum noise level is being studied. It is conceived that such a sensor contains a torsion
mass-spring system, a capacitive pick-off circuit to detect motions of the sensing mass, and a capacitive sys-
tem to reduce torsion stiffness. Both capacitive systems are combined into a single differential capacitance
electrostatic system. The torsion stiffness is reduced by applying an electric field. Problems resulting from the
electrostatic asymmetry of the differential system are studied analytically and numerically. The quasi-static
and dynamic modes of the free movement of the sensing mass, in the absence of energy loss, are considered.
The angular intervals of stability of the sensing mass movement in the electrostatic field, depending on the
differential system asymmetry parameter and a frequency of free oscillations «proof massy, are calculated.
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Introduction

Designing a supersensitive gravi-inertial sensors
measuring linear and angular accelerations of mo-
ving objects with second derivatives of gravitational
potential, on the Earth surface and in circumplan-
etary space is a problem that stands in front of sci-
ence and developers since the late 50" century until
currently [1-6].

Typically such sensors comprise a sensing mass
(often called as a movable mass, or proof mass (PM))
retained relative to the housing by an elastic mechan-
ical coupling. This elastic coupling is characterized
by a natural frequency of free oscillations of PM
along the axis of the sensor sensitivity. In order to
increase the sensitivity of the sensor, it is required
to reduce this frequency, the internal noise and the
noise of a read-out system [7].

Actually the capacitive microelectromechanical
(MEM) — accelerometers are broadly known where
electrical capacitors are used for reading of the de-
sired signal, and MEM capacitive actuators, where
electrical capacitors and electrical fields are used to
control the movement of the elastically suspended
PM and to drive its resonant frequency.

Actuators usually establish the limits of motion
control while the change of the resonant frequencies
are limited by the pull-in effect [8]. This effect is due
to the fact that, if PM deflects from their equilibrium
position, the electrostatic forces will grow faster than
the elastic force holding the PM near the equilibrium
position. When the electric forces start to exceed the
mechanical strength, the system becomes unstable
and the PM tends to stick the structural elements of
the device carrying electrical charges.

Typically the electric field forces in measur-
ing devices with capacitive readout are too small to
achieve the pull-in effect. But there is possibility to
adjust the stiffness in a narrow interval [9]. In [10]
the gravi-inertial sensor was proposed in which the
function of the capacitive sensor and actuator are
combined into a single differential capacitive sys-
tem. In this sensor, it was assumed that the electric
field forces are enough to compensate elastic forces
in the direction of the sensitive axis. It was assumed
that such a combination in the graviinertial sensors
will allow achieving maximum sensitivity and mini-
mum level of noise.

Capacitive sensors are non-linear due to the
physical properties of electrical capacitors. There-
fore, differential electrostatic systems are often used
in measuring instruments, because nonlinearity may

be partly compensated there [11]. However, the ef-
fect of asymmetry of the differential capacitive sys-
tems is still not fully explored. Such study was car-
ried out for a quasi-static displacement of PM in the
gravi-inertial sensors [12], where it was shown that
it is the asymmetry of the differential electrostatic
system that sets a limit to reduce the torsion stiffness
of the suspension of PM using the electrostatic field.

The purpose of this work is within the frame-
work of a unified approach to investigate the effect of
asymmetry of the nonlinear differential electrostatic
system on PM movement in quasi-static mode and
in the free oscillation mode as accurately as possible
within the selected mathematical model. Research is
carried out for a lumped system with one degree of
freedom. In this step of research energy losses are
not considered.

Investigation of the stability of quasi-static mode
of the PM in an electric field

A simplified scheme of a gravi- inertial sensor
chosen for the calculations is shown in Figure 1. The
description details of this scheme and original cal-
culations of the capacitor with the inclined plate are
given in [12].

The elastic M torque and the electrical torque
M affect the PM in this sensor. Dependence of the
total torque acting on the PM angle ¢ deviations
from the equilibrium position can be written as [12]:

_8v+y(l+v)2

(1-v)

where: v = @ ; parameter ¢, = h—oln 4 |related
m L a,

M(v)=M, (v)-M,(v)=B|ky (1)

to the geometry of the system; /4 — the gap between
the capacitor’s plates when ¢=0;

1 L 1 L
a, =h—ln(r+5],a2 :h—ln(l"—zj;
0 0

k — the mechanical torsion stiffness;
k 1 CU?
k, = K ;B=——0,
B 2 0,

When Eq. (1) was used, it was assumed that the
total capacity of a first pair of capacitors C +C,=2C;
and the total capacitance of the second pair of ca-
pacitors C,+ C,= (1 +y)C,+(1 +v,)C,= (2 +7)C,
where y = y, + y, — parameter characterizing the
asymmetry of an electrostatic system.
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Figure 1 — Model of the differential sensor: 1 — conductive
PM; 2 — non-conductive plate; 3 — electrode. The resilient
torsion is shown in the PM center

It follows from Eq. (1) that with the absence of
an electric field (U = 0) the PM is located in a equi-
librium position (angle v = 0). If the electric field is
turning on sluggishly, such that the kinetic energy of
PM’s motion can be neglected, the PM will turn to a
new equilibrium position with the angle v . By sol-
ving the equation M(v) = 0, we can find the relation
between the angle of v and parameter y under quasi-
static motion of PM:

(v2 —1)2 k,—8
(v+1)2 '

y(v)=v 2)

The dependence of y(v) is shown graphically in
Figure 2. The calculations shown below will use the
parameters of the sensor listed in Table.

0.01
5107

1) o

~5x107°

-0.01

Figure 2 — Dependence y (v) is obtained from the equation
M(v) = 0 and the characteristic angles from v, to v.. The
angle v_ is the static equilibrium of PM

In this table, the parameter /' — natural frequen-
cy of the PM when the electric field is switch off
(U =0), f, — the natural frequency of the PM if the
electric field is turned on.

Table
Parameters of the design model of the sensor
I, kgm’ 4,914-10*
k, N-m/rad 4
/. Hz 14,36
Jo Hz 2
L,m 0,035
r, m 0,0525
h,, mm 0,1
o,, rad 1,98-107
C,, pF 123,9

In the Figure 2, each value of vy in an interval
Y, <7y <, corresponds to three values of the angle
v, in which M = 0 (analytical values y, and v, are de-
fined below). It is proved beneath that in the angular
range between the values v, and v, are corresponding
to a specific value y (in Figure 2, angles v, and v, are
matching the value of the parameter y = 0,003), the
effect of pull-in does not occur, that means the PM
deviation from the angle v, is stable. Solving the Eq.
M (v) =0 leads to Eq. g5(v) = 0 with the polynomial
of the fifth degree

g5(V) = (=k)V’ + 2k V' +yv? + (Y +8—k )V +7. 3)

In general, this equation can not be solved ana-
lytically. However, if first term is neglected, one ob-
tains an equation of the third degree g3(v) =0, where,

4

The relations of g5(v) and g3(v) are compared to
each other in the Figure 3. It is obvious that for the
sensor with the values taken from the Table in the
angular range between v, and v,, the curves practi-
cally are coincided.

g3(v)=2kV + v +(2y +8—k v +7.

Vi Vs,
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Figure 3 — The relations of g5(v) (continuous line) and
23(v) (dashed line)
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Eq.(4) has an analytical solution. This solution
can be found using the trigonometric Vieta formulas
[13]. So that, if the polynomial of third order has the
form av’ +bv?+ cv+d =0, the parameters Q, R, S and
y have to be determined using the formulas:

o=5|(2) =]

3
e o] ot
54 a a a

S=0'-R,

1 R
\V:§arccos E .

If § > 0, the equation g3(v) = 0 has three real
roots, and the position of the equilibrium v  and qua-
si-static PM deviations between the points v, and v,
are stable. Graph of signS(y) in the sensor is shown
in Figure 4.

)

Figure 4 — The relation of the parameter sign S(y)

It can be seen that in the range y, <y <7, the
parameter S > 0 indeed. In this case, the roots of the
equation (4) follow to (6):

v, =2 Qcosw—%%,

v2=—2\/_cos(\|/+2—nj—lé, (6)
3 3a
2n) 1b
vi=v, ==20cos| y—— |-=— .
3 st Q (W 3j 361

Using the parameters from the Table, ify=0.003,
one has v, = —0,10534(-0,10561), v,= 0,08450(0,08
468), v = 0,02066(0,02066). Here in parentheses are
shown the values of the roots obtained while solving
the equation g5(v) = 0.

The angles v, and v, corresponding to the ex-
treme values of the parameter y (shown in Figure 2),

are the real roots of an algebraic equation of the
fourth order:

v 48V + 67 —[l _kij =0. 7

1

This equation can be solved analytically. If to
denote u = £,/ f, and to introduce the designation as:

zl(u):%(l—i-u)(l—uz);

8)
2, () =4z, (u) " +92, (u) +4(1-u); o
164z, (¢) +2,| 8z, (u 1/37921 u)” 4z, (1-u*
ZS(M)J o) 2 8 1) 92, () -4, (1) (10)

6Z] (u)llb z, (u)l/z

the angles v, and v, are determined by the formulas:

)= 20 -2

o ((” )) (11)
z,(u 2
Vs (u)= 621(14)1/6 +z (u)—g

Extreme values of parameter y can be calculated
from Eq. (2), namely vy, = y(v,), and y, = y(v,).

It should be noted that the angles v, and v, do
not depend on y, but depend only on the param-
eter u. Therefore, we can create the relation of
y,(u) = y(v,(w)) and y,(u) = y(v(w)) which give an
idea about the actual achievable minimum values of
frequency f, determining the sensitivity of the sen-
sor for a given value of the parameter y. The required
relations for the sensor with the parameters for Table
are shown in Figure 5.

10
Yl(u)\‘ _________
01F = ¢
3 Yz(u)
1x10
-5
1x10
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1x10 L ! I
0 0.2 04 0.6 0.8
u=/fo/ [

Figure 5 — Dependence of the maximum permissible va-
lues of a parameter y in the mode of quasi-static stability
of the PM on the relative frequency u

Investigation of the stability of free oscillations
of the PM in an electric field

Stability of free oscillations of PM is determined
by the relations of the potential energy me((p) of the
angle . Integrating M(o), if W_(0)=0, gives:

pot

19



IIpubopsi u memoos: usmeperuil
2016.—-T. 7, Ne 1. — C. 16-23
Jrcunasoapu U. u op.

Devices and Methods of Measurements
2016, vol. 7, no. 1, pp. 16-23
Gilavdary I. et al.

klv(l—vz)—2(7+4)v—2y

W, (v)=Bo,v 2(1 — )

(12)

The relation of me(v) for the symmetric and
asymmetric sensors is shown in Figure 6. It shows
that the asymmetry of the capacitance of the system
disturbs the symmetry of the potential well. Angles
v =v, and v = v — are the extreme values range
of stability of the sensor in case of y = 0. Similarly,
angles v = v and v = v, have the same sense, but in
case when y = 0,003.

1510 T

_9
Ix10

~10
10

pV;: o r( V)

Figure 6 — The relation of the potential energy W (v)

pot

with respect to the angle of deflection PM,when y = 0 u
v= 0,003

Figure 6 indicates that, if y > 0, the free move-
ment of PM can exist only in the interval of angles
v'<v<wv,.Angle v’ can be named as «a turning
point». PM velocity is absent at the point v,. The an-
gle v " will be defined below analytically.

It is easy to see the characteristic features dy-
namics of a stable movement PM in symmetric and
asymmetric sensors from their phase portraits. If a
velocity PM is absent in the point v = v,, according
to the law of conservation of energy, the formula of
the angular velocity p(v) of PM with respect to the
angle v is

)= [ ()W )]

(13)

The phase trajectories are shown in Figure 7.
When y = 0, these trajectories correspond to a stable
system in the range v, <v <v,_,, and when y = 0,003,
a stable system is in the range v <v <wv,.

To calculate the angle v *, the equation p(v) = 0
has to be solved. From equations (12) and (13), intro-
ducing the notations:

353
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Figure 7 — The phase curves of the free movement of PM
when y = 0 and y= 0,003

k, =k, (1_V22)7ar =k, b =vk,

14
¢, =2y(1+v,) =k, +8, d =2y(1+v,), (14
the equation determining v " follows to (15):
av:+bv: +cv +d. =0. (15)

Using Vieta formulas of (5)—(6) and the value
of angle v, = 0,08468, obtained above, for sensor pa-
rameters in Table and for y = 0,003, it can be found
v " =-0,01878. Then the interval of stable free oscil-
lations of PM will be determined by the formulas:

when y > 0, this interval is given by:

As=v, =V, (16)
when y < 0, this interval is given by:
A, =v. —v, (17)

where v " and v~ — the coordinates of «turning
points» when y > 0 and y < 0, respectively.

In general, in contrast to the stability of the quasi-
static intervals of PM movement, where the formula
for calculating the boundary points does not depend
on the sign of vy, the calculation of intervals of dyna-
mic stability determined in Eq.(16) and Eq.(17)
should be carried out separately for y > 0 and for
y < 0, because dependence of v" and v~ on y. The
formulas for the calculation of v ~ differ from similar
formulas for v * by replacing v, to v, in the formulas
(14).

The calculations of A" and A ;" with respect to
the parameter y are shown in Figure 8.

Here a similar relation for the stability of the
quasi-static range Av_ = v, —v, is also shown. Figure
8 shows that the intervals of dynamic stability de-
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creases sharply with increasing y while the range of
static stability changes only slightly throughout the
range of acceptable values vy.

Vl Jo=2Iy A

02

-0.05

Figure 8 — The relation of static Av_, and dynamics A,
and A, stables angular intervals, and also the angle of
static equilibrium v, with respect to the asymmetry pa-
rameter Y when the value of the natural frequency /=2 Hz.
In the rectangle highlighted in dashed lines, shows similar
curves calculated with the same scale, when f=1 Hz

It is also seen that the interval of acceptable va-
lues of the asymmetry parameter y and the interval of
rotation angles of PM, where the static and dynamic
resistance are kept sharply narrow with decreasing
the resonance frequency f;, or with decreasing tor-
sion stiffness.

Conclusion

It is impossible to achieve the ideal symmetry
of the differential capacitive systems experimentally.
There were no systematic studies of the effect of
such asymmetry on the resulting stiffness of the
suspensions of PM in gravi-inertial sensors taking
into account their non-linearity.

In this paper it was found, in both quasi-static
and dynamic modes of PM’s free movement, that the
asymmetry of the differential electrostatic system is
the most important factor limiting the ability to reduce
the stiffness of the suspension, or, the sensitivity of
the sensor using an electric fields.

It is shown that the asymmetry of the differential
capacitive system limits the area of the sustainability
of PM’s free oscillations much greater than the area
of the quasi-static stability.

On the other side, the symmetry has to
sharply increase with significant decrease of the
its PM’s natural frequency due to the electric field.
Particularly, values of the natural frequency f,, equal
to 4 Hz, or 2 Hz, or 1 Hz, can be obtained in the
model of the sensor, which has the natural frequency
in the absence of an electric field is '~ 14 Hz, in
case if the voltage source of the electric field are
respectively 170,876 V, or 176,185 V, or 177,487 V.
In these cases, the free oscillation of PM will be
stable with respect to the angular interval A * = 0.04
(or in absolute values about 16 arc second), if the
value of asymmetry y doesn’t exceed 4 %, 0,5 %, or
0,05 %. respectively. The last result imposes very
strict requirements for sensor technology production.

Further investigation of the gravi-inertial
differential capacitive sensor system’s dynamics
have to consider energy losses for friction and for the
current flow in resistors of an electrical circuit during
PM free and forced motion.
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Crarnvyeckasi 1 JMHAMHUYECKAsd CTA0MJIBHOCTD
rPABMMHEPHHUAIBHOIO JATYMKA ¢ EMKOCTHOM
augPepeHHATBHOA CUCTEMO YyIIPaBJIeHUA
YYBCTBUTEJIbHOCTbIO

HMaxuaapaapu U.', Mekua C.2, Pusnookasi H.!, Aoaya Carep A.!

! Benopycckuil HAYUOHAIbHbII MEeXHUYCCKULL YHUGEPCUmMen,
np. Hezasucumocmu, 65, 220013, e. Munck, Berapyco

?Vuusepcumem neghmu u noneznvix uckonaemuvix kopons axoa,
31261, /lxaxpan, Cayoosckas Apasus

Ilocmynuna 05.01.2016
Ipunama x newamu 08.02.2016

N3ygaeTcst KOHCTPYKITUS TPAaBUUHEPIIMATHHOTO JaTdyuKa C YIPYyro IMOABEIICHHON Maccoi, 00i1anarormero
MaKCHUMaJIbHON YyBCTBUTEIIFHOCTHIO 1 MHHUMAIBHBIM YPOBHEM ITyMa. J[aTdnuK COMEp KHUT YNPYTHUH TOPCH-
OH, DJIEKTPOCTATHUECKYI0 EMKOCTHYIO CHUCTEMY U3MEPEHUS BIDKECHUS MOABMYKHON MACCHI M DJICKTPOCTATH-
YECKYI0 €MKOCTHYIO CHCTEMY YMEHBIIICHUS KPYTHIBHON KECTKOCTH TopcuoHa. O0e eMKOCTHBIE CHCTEMBI
00BeAHEHBI B eMuHYI0 TudGepeHIInaIbHyI0 EMKOCTHYIO JIEKTPOCTATHUECKYIO0 CUCTEMY. AHATUTHICCKU U
YUCJICHHO M3yYaroTCsl MPOOIeMBbI, BOZHUKAIOIINE B PE3yJbTaTe aCHMMETPHHU ITON CHUCTeMBI. McciemyroTes
KBa3WCTAaTUICCKUN M TUHAMUYCCKHA PEKUMBI CBOOOTHOTO JIBYKEHUS MOABMYKHONW MAacCChI IPH OTCYTCTBUU
MOTEeph DHEPTUU. PacCUMTHIBAIOTCS YITIOBBIE WHTEPBAJBI YCTOMYMBOCTH JBIDKCHUS TTOIBIKHOW MacChl B
ANEKTPOCTATUICCKOM TIOJI€ B 3aBHCHMOCTH OT TIapaMeTpa aCUMMETpuu AU PepeHIINATBHON CHCTEMBI U OT
YaCTOTHI CBOOOIHBIX KOJICOAHMIA.
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