УДК 535.327, 535.012

ИЗМЕРЕНИЕ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ МЕТОДОМ ОТКЛОНЕНИЯ ЛАЗЕРНОГО ПУЧКА В СРЕДЕ С ЛИНЕЙНЫМ ГРАДИЕНТОМ ТЕМПЕРАТУРЫ

Лойко П.А.¹, Юмашев К.В.¹, Кулешов Н.В.², Павлюк А.А.³

 ¹ Научно-исследовательский центр оптических материалов и технологий БНТУ, Минск, Республика Беларусь
 ² Кафедра лазерной техники и технологии БНТУ, Минск, Республика Беларусь
 ³ Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН,

Новосибирск, Российская Федерация

Создана экспериментальная установка для определения температурного коэффициента показателя преломления dn/dT методом отклонения лазерного пучка в среде с линейным градиентом температуры. При помощи данной методики измерены величины dn/dT оптически двухосного кристалла калий-гадолиниевого вольфрамата KGd(WO₄)₂ для излучения, поляризованного вдоль главных направлений в кристалле в спектральном диапазоне 0,4–1,06 мкм.

Введение

При оптической накачкелазерных активных элементов на основе активированных диэлектрических кристаллов в их объеме происходит выделение тепла, которое приводит к возникновению неоднородных профилей температуры T(r), и следовательно, показателя преломления *n*(*r*). Изменение профиля показателя преломления происходит под действием трех основных факторов: зависимости показателя преломления *n* от температуры; зависимости показателя преломления от внутренних напряжений в кристалле (фотоупругий эффект); макроскопического искажения поверхностей активного элемента под действием эффекта неоднородного термического расширения [1]. Термооптически возмущенный активный элемент искажает волновой фронт проходящего через него пучка излучения, что может приводить к нарушению условий стабильности лазерного резонатора, деформации пространственного профиля пучка лазерного излучения, и, следовательно, падению выходной мощности лазера [2]. Зависимость показателя преломления от температуры (которая в первом приближении описывается выражением n(T) == $n(T_0) + dn/dT(T-T_0)$, где dn/dT есть температурный коэффициент показателя преломления), является одной из ключевых характеристик, определяющей характер термооптических искажений [3]. В связи с этим знание величин dn/dT на длинах волн лазерной генерации является необходимой информацией при конструировании и оптимизации работы лазерных и нелинейно-оптических систем на основе активированных диэлектрических кристаллов.

Известны два основных метода измерения величин dn/dT. Первый основан на определении показателя преломления материала в широком диапазоне температур путем измерения угла наименьшего отклонения в образце, имеющем форму призмы [4, 5]. Недостатком данной методики являются высокие требования к однородности нагрева образца, а также тот факт, что при расчете величин n(T) не учитывается влияние эффекта термического расширения, который может приводить к изменению угла раствора призмы [6]. Второй, интерферометрический подход, позволяет учесть вклад эффекта термического расширения, но требует значительно более сложной экспериментальной установки [7, 8]. Более того, при использовании данных подходов затруднен анализ анизотропии температурного коэффициента показателя преломления (зависимости величин dn/dT от поляризации света E). Недавно для исследования анизотропии величин dn/dT был предложен подход, основанный на измерении углового отклонения луча в среде с линейным градиентом температуры [6]. В данной работе разработана экспериментальная установка, реализующая данный метод, и определены величины dn/dT для оптически двухосного кристалла калий-гадолиниевого вольфрамата KGd(WO₄)₂ в спектральном диапазоне 0,4–1,06 мкм для излучения, поляризованного вдоль главных направлений в кристалле.

Методика измерений

Рассматриваемый метод измерения температурного коэффициента показателя преломления основан на регистрации углового отклонения лазерного пучка, проходящего через исследуемую среду, в которой создан линейный градиент температуры. При этом исследуемый образец приготавливается в форме параллелепипеда, лазерный пучок имеет плоский волновой фронт, и линейный градиент температуры формируется в направлении, ортогональном к направлению распространения пучка лазерного излучения и направлен вдоль одного из ребер образца.

Процедура измерения состоит в следующем. На экране, расположенном на некотором расстоянии L_{экр} от заднего торца исследуемого образца, регистрируется положение пучка x_1 в отсутствии градиента температуры (т.е. при некоторой постоянной температуре по всему объему образца). Затем в образце устанавливается линейный градиент температуры, харакразностью температур теризуемый $T_{\rm B}-T_{\rm H}$ между более нагретой Т_в и более холодной Т_н гранями образца. Это приводит к отклонению пучка, и, следовательно, смещению пучка на экране в положение x₂. Расстояние до экрана L_{экр} выбирается таким, чтобы выполнялось условие x₂-x₁ << L_{экр}. При это угловое отклонение пучка определяется выражением

$$\theta = (x_2 - x_1)/L_{\text{экр.}} \tag{1}$$

Если плоский волновой фронт излучения, падающего на образец, характеризуется вектором нормали к волновой поверхности n_1 , то после прохождения образца волновой фронт пучка будет характеризоваться вектором нормали к волновой поверхности n_2 (рисунок 1 *a*). При этом угол между векторами n_2 и n_1 равен углу отклонения пучка от первоначального направления распространения, т.е. углу θ [выражение (1)]. Луч света, который распространяется вдоль более нагретой грани образца, проходит расстояние $L+\Delta L$, где L – длина образца в направлении распространения лазерного излучения при температуре $T_{\rm H}$, а ΔL – удлинение образца под действием эффекта термического расширения в данном направлении.

Рисунок 1 – Схема, иллюстрирующая отклонение пучка в среде с линейным градиентом температуры: n_1 и n_2 – векторы нормалей волнового фронта до и после прохождения образца с линейным градиентом температуры; θ – угол отклонения от первоначального направления распространения; ΔL , ΔH и Δn – изменение геометрических размеров образца (L и H) под действием эффекта термического расширения и изменение показателя преломления образца n из-за температурной зависимости показателя преломления; T_B и T_H – температуры более

нагретой и более холодной граней образца.

Это расстояние луч проходит за время

$$t_1 = (L + \Delta L)(n + \Delta n)/c =$$

= $Ln/c + \Delta Ln/c + L\Delta n/c + o(\Delta L\Delta n).$ (2)

Здесь Δn – изменение показателя преломления под действием эффекта температурной зависимости показателя преломления. Выражение (2) получено при пренебрежении членами второго порядка малости пропорциональными $\Delta L\Delta n$. Луч, распространяющийся вдоль более холодной грани, проходит это же самое расстояние $L+\Delta L$ за время:

$$t_2 = Ln/c + \Delta L/c. \tag{3}$$

<u>Методы измерений</u>

Следовательно, после прохождения образца луч, который распространяется вдоль более холодной грани образца, опережает луч, который распространяется вдоль более нагретой грани, на расстояние:

$$\Delta = (t_1 - t_2)c = (dn/dT + (n-1)\alpha_T)L(T_B - T_H).$$
(4)

При выводе выражения (4) было принято во внимание, что $\Delta n = dn/dT(T_{\rm B}-T_{\rm H})$ и $\Delta L = \alpha_{\rm T}(T_{\rm B}-T_{\rm H})L$, где $\alpha_{\rm T}$ – коэффициент линейного термического расширения образца в направлении распространения лазерного излучения. Таким образом, угол отклонения лазерного пучка θ равен Δ/H , где H – ширина образца в направлении линейного градиента температуры (рисунок 1 *a*). Величина $dn/dT+(n-1)\alpha_{\rm T}$ представляет собой термический коэффициент оптического пути материала. Если $dn/dT+(n-1)\alpha_{\rm T} > 0$, пучок лазерного излучения смещается в сторону грани с более высокой температурой, если же $dn/dT+(n-1)\alpha_{\rm T} < 0$, то смещение происходит в сторону грани с более низкой температурой.

Влияние эффекта термического расширения приводит также к расширению образца и в других направлениях (рисунок 1 δ , ϵ). Расширение образца в направлении, ортогональном к направлениям линейного градиента температуры и направлению распространения излучения, не приводит к изменению ориентации вектора нормали n_1 (рисунок 1 δ). В направлении линейного градиента температуры (рисунок 1 ϵ) образец удлиняется на $\Delta H = \alpha_{\rm T}'(T_{\rm B} - T_{\rm H})H(\alpha_{\rm T}'$ коэффициент линейного термического расширения в данном направлении). С учетом этого эффекта выражение для угла θ принимает вид

$$\theta' = \frac{\Delta}{H + \Delta H} \approx \theta (1 - \frac{\Delta H}{H}).$$
(5)

Поскольку $\Delta H/H = \alpha_{\rm T}'(T_{\rm B}-T_{\rm H}) << 1$, то влиянием этого эффекта на изменение угла отклонения лазерного пучка θ можно пренебречь. В итоге, выражение для определения термического коэффициента оптического пути может быть получено из (1) и (4):

$$dn/dT + (n-1)\alpha_{\rm T} = \frac{(x_2 - x_1)H}{LL_{\rm \hat{y}\hat{e}\hat{0}}(T_{\hat{a}} - T_{\rm i})}.$$
 (6)

Необходимо отметить, что в случае, когда две противоположных грани не закрепленного

жестко образца поддерживаются при различных постоянных температурах, деформации, отвечающие свободному температурному расширению элемента, не вызывают в нем температурных напряжений [9] и не оказывают влияния на профиль показателя преломления образца и, следовательно, на волновой фронт проходящего через него пучка излучения.

Таким образом, при проведении измерений методом отклонения лазерного пучка в среде с линейным градиентом температуры экспериментально определяется величина термического коэффициента оптического пути [выражение, стоящее в левой части формулы (6)] по измеренному значению смещения x_2-x_1 с учетом геометрии эксперимента.

Для определения зависимости величины термического коэффициента оптического пути от поляризации и направления распространения излучения для оптически двухосных кристаллов обычно изготавливают три образца, ребра которых ориентированы параллельно осям оптической индикатрисы кристалла, а именно $N_{\rm p} \times N_{\rm m} (=H) \times N_{\rm g} (=L)$, $N_{\rm p} \times N_{\rm g} (=H) \times N_{\rm m} (=L)$ и $N_{\rm g} \times N_{\rm m} (=H) \times N_{\rm g} (=L)$. Для оптически одноосных кристаллов изготавливаются два образца, один из которых ориентирован в направлении оптической оси O, а второй – перпендикулярно к ней. Для изотропных материалов изготавливают один образец.

Для оптически двухосных кристаллов для каждого из трех образцов измеряются значения *dn/dT*+(*n*-1)*a*_T для двух различных поляризаций лазерного излучения. Так как в выражении $dn/dT+(n-1)\alpha_{T}$ температурный коэффициент показателя преломления *dn/dT* и показатель преломления *n* определяются поляризацией света, а коэффициент линейного термического расширения $\alpha_{\rm T}$ – направлением распространения излучения, то в результате измерения получают шесть различных значений термического коэффициента оптического пути (таблица 1). Здесь $n_{\rm p}$, $n_{\rm m}$ и $n_{\rm g}$, $dn_{\rm p}/dT$, $dn_{\rm m}/dT$ и dn_g/dT – значения показателя преломления и температурного коэффициента показателя преломления кристалла для поляризаций света $E \parallel$ $N_{\rm p}, N_{\rm m}$ и $N_{\rm g}$, соответственно, а $\alpha_{\rm p}, \alpha_{\rm m}$ и $\alpha_{\rm g}$ – значения коэффициента линейного термического расширения вдоль осей N_p, N_m и N_g, соответственно.

В случае оптически одноосных кристаллов для образца, ориентированного ортогонально к направлению оптической оси, проводят два измерения для поляризаций света $E \parallel O$ и $E \perp$ О; для образца, ориентированного вдоль оптической оси – одно измерение для поляризации света $E \perp O$. В результате получают три различных значения термического коэффициента оптического пути (табл. 1). Здесь n_0 и n_e , dn_0/dT и dn_e/dT – значения показателя преломления и температурного коэффициента показателя преломления кристалла для поляризаций света $E \perp$ O и $E \parallel O$, соответственно, а α_{\parallel} и α_{\perp} – значения коэффициента линейного термического расширения вдоль оптической оси и перпендикулярно к ней, соответственно. Для изотропных материалов величина $dn/dT+(n-1)\alpha_T$ не зависит от поляризации и направления распространения излучения.

Значения температурного коэффициента показателя преломления dn/dT рассчитываются на основе экспериментальных данных о термическом коэффициенте оптического пути [выражение (6)] и литературных данных о значениях показателя преломления *n* и коэффициента линейного термического расширения ат. Значения показателя преломления $n(\lambda, E)$ зависят от длины волны λ и поляризации лазерного излучения и рассчитываются из уравнений Селмейера для исследуемого кристалла. Для оптически двухосных кристаллов анизотропия коэффициента термического расширения описывается тензором *а*_{ii}, который может быть приведен к диагональному виду $\alpha_{ij}' = diag(\alpha_{11}')$, *а*₂₂',*а*₃₃'). Значения коэффициента термического расширения в произвольном направлении, определяемом единичным вектором $n = (n_1, n_2, n_3)$ *n*₃), рассчитываются при помощи выражения:

$$\alpha_n = \alpha_{ij} n_i n_j, \ i, j = 1..3 \ [10]. \tag{7}$$

Для оптически одноосных кристаллов тензор коэффициентов термического расширения α_{ij} характеризуется двумя главными значениями, которые обозначаются α_{\parallel} и α_{\perp} , а для изотропных сред – одним значением α_{T} .

Как следует из таблицы 1, для оптически двухосных кристаллов для каждой из поляризаций света **Е** || N_p, N_m и N_g получают два значения dn/dT (которые различаются направлением распространения излучения). Для оптически одноосных кристаллов получают значение dn_e/dT и два значения dn_o/dT (которые также различаются направлением распространения излучения). Результирующие значения dn/dT определяют путем усреднения значений, полученных для различных направлений распространения излучения. Таким образом, анизотропия температурного коэффициента показателя преломления для оптически двухосных кристаллов может быть охарактеризована тремя значениями dn_p/dT , dn_m/dT и dn_g/dT , а для оптически одноосных кристаллов - двумя значениями dn_o/dT и dn_e/dT . Мера различия данных величин характеризует анизотропию температурной зависимости показателя преломления.

Ошибка в определении термического коэффициента оптического пути связана главным образом с ошибкой определения углового отклонения лазерного пучка θ и для разработанной экспериментальной установки составляет ~ 3×10^{-7} K⁻¹. При определении температурного коэффициента показателя преломления возникает дополнительная ошибка, связанная с погрешностью в измерениях величин *n* и $\alpha_{\rm T}$, которая может достигать ~ 1×10^{-6} K⁻¹.

Таблица 1

		п								
двухосные кристаллы										
	$\boldsymbol{E} \parallel N_{p}$	E	$ N_{\rm m} $	$oldsymbol{E} \parallel N_{ ext{g}}$						
$\boldsymbol{k} \parallel N_{\mathrm{p}}$	_	$dn_{\rm m}/dT$	$(n_{\rm m}-1)\alpha_{\rm p}$	$dn_{\rm g}/dT + (n_{\rm g}-1)\alpha_{\rm p}$						
$\boldsymbol{k} \parallel N_{\mathrm{m}}$	$dn_{\rm p}/dT + (n_{\rm p}-$	$-1)\alpha_{\rm m}$	_	$dn_{\rm g}/dT + (n_{\rm g}-1)\alpha_{\rm m}$						
$\boldsymbol{k} \parallel N_{\mathrm{g}}$	$dn_{\rm p}/dT + (n_{\rm p}-$	$-1)\alpha_{\rm g} = dn_{\rm m}/dT$	$(n_{\rm m}-1)\alpha_{\rm g}$	_						
	(
		$\boldsymbol{E} \parallel O$	$E \perp C$)						
	k O	_	$dn_o/dT + (n_o$	$(-1)\alpha_{\parallel}$						
	$\mathbf{k} \perp O = d$	$n_{\rm e}/dT + (n_{\rm e}-1)\alpha_{\perp}$	$dn_{\rm o}/dT + (n_{\rm o})$	$-1)\alpha_{\perp}$						

Значения термического коэффициента оптического пути, получаемые при измерениях с оптически одноосными и двухосными кристаллами: *E* – вектор напряженности электрического поля, *k* – волновой вектор

Экспериментальная установка

Схема экспериментальной установки, реализующей метод отклонения пучка в среде с линейным градиентом температуры, приведена на рис. 2. В качестве источников излучения используются лазерный диод (длина волны генерации 405 нм), Не-Ne лазер (632.8 нм) и диодно накачиваемый Nd:YAG лазер с удвоением частоты в микрочип-конфигурации (532 и 1064 нм). Во всех случаях лазерное излучение является линейно поляризованным. Для уменьшения расходимости пучка лазерного излучения используется телескопическая система и диафрагма. Выбор длины волны излучения производится при помощи отрезающих светофильтров. Диаметр лазерного пучка составляет 1-2 мм (по уровню $1/e^2$). После прохождения исследуемого образца положение лазерного пучка регистрируется при помощи ПЗС-камеры. Исследуемый образец имеет вид параллелепипеда размерами 5×5 мм (торец)×10 мм (длина). Верхняя поверхность образца поддерживается при низкой температуре, а нижняя при более высокой, формируя в образце линейный градиент температуры, направленный перпендикулярно к направлению распространения излучения. Для создания в образце однородного распределения температуры обе поверхности образца поддерживаются при одинаковой постоянной высокой температуре.

Результаты измерений

В работе измерены величины dn/dT оптически двухосного кристалла калий- гадолиниевого вольфрамата KGd(WO₄)₂ в спектральном диапазоне 0.4-1.06 мкм для излучения, поляризованного вдоль главных направлений в кристалле. Кристалл KGd(WO₄)₂, активированный ионами редкоземельных металлов (неодима, иттербия, эрбия, туллия), широко используется для создания мощных твердотельных лазеров с ламповой и диодной накачкой (в том числе для генерации импульсов сверхкороткой длительности); а также нелинейно-оптических применений (самопреобразования частоты излучения на основе вынужденного комбинационного рассеяния) [5, 7, 8]. Данный кристалл относится к оптически двухосным средам [8].

Для измерений температурного коэффициента показателя преломления данного кристалла методом отклонения лазерного пучка в среде с линейным градиентом температуры были приготовлены три образца размерами $N_p \times N_m (5 \text{ мм}) \times N_g (10 \text{ мм}), N_p \times N_g (5 \text{ мм}) \times N_m (10 \text{ мм})$ и $N_g \times N_m (5 \text{ мм}) \times N_p (10 \text{ мм})$. Результаты измерений показывают, что в кристалле KGd(WO₄)₂ значения термического коэффициента оптического пути имеют различные знаки в зависимости от поляризации и направления распространения излучения (таблица 2).

Рисунок 2 – Схема установки для измерения термического коэффициента оптического пути $dn/dT+(n-1)\alpha_T$ в анизотропных диэлектрических кристаллах при помощи метода отклонения пучка в среде с линейным градиентом температуры: Л – источник лазерного излучения, Т – телескоп, Д – диафрагма, Ф – отрезающие светофильтры, E_1 и E_2 – векторы напряженности электрического поля лазерного излучения, k – волновой вектор. Сплошная линия – распространение пучка для образца с однородным распределением температуры, штриховые линии – при наличии линейного градиента температуры в образце

Показатели преломления кристалла KGd(WO₄)₂ для излучения, поляризованного в направлении осей оптической индикатрисы, были рассчитаны на основе зависимостей Селмейера (так, на длине волны 1.06 мкм $n_{\rm p} = 1.9818, n_{\rm m} = 2.0101$ и $n_{\rm g} = 2.0609$) [11]. Симметрия кристаллической решетки КGd(WO₄)₂ соответствует точечной группе I2/с (моноклинная сингония). Одна из главных осей тензора коэффициентов термического расширения Х₂' (соответствующая наименьшему значению а22) совпадает с кристаллографической осью **b** и осью оптической индикатрисы $N_{\rm p}$. В плоскости, ортогональной к оси b, расположены две другие оси Х₁' и Х₃'; кристаллографические оси а и с; оси оптической индикатрисы N_g и N_m [11]. Для направления, ориентированного произвольным образом относительно осей $\{X_i\}$ и определяемого вектором нормали n, коэффициент линейного термического расширения определяется выражением:

$$\alpha_n = \alpha_{11} [\sin\varphi \cdot \cos\psi]^2 + \alpha_{22} [\cos\varphi]^2 + \alpha_{33} [\sin\varphi \cdot \sin\psi]^2.$$
(8)

Здесь φ – угол между направлением вектора **n** и осью X₂', а ψ – угол между проекцией вектора **n** на плоскость (X₁'–X₃') и осью X₁' (рис. 3).

Используя данные работы [8], с помощью выражения (9) можно определить коэффициенты линейного термического расширения в направлениях осей оптической индикатрисы, которые равны $\alpha_{\rm p} = 2.4 \times 10^{-6} \text{ K}^{-1}$, $\alpha_{\rm m} = 11 \times 10^{-6} \text{ K}^{-1}$ и $\alpha_{\rm g} = 17 \times 10^{-6} \text{ K}^{-1}$.

Исходя из данных о величинах n и $\alpha_{\rm T}$ были определены значения температурного коэффициента показателя преломления dn/dT для кристалла KGd(WO₄)₂ (таблица 2). Значения dn/dTдля света, поляризованного в направлении осей оптической индикатрисы, отрицательны и удовлетворяют соотношению $|dn_m/dT| < |dn_p/dT| < |dn_p/dT|$. Полученные данные хорошо согласуются со значениями dn/dT для кристалла Yb:KGd(WO₄)₂, измеренными при помощи интерферометрической методики на длине волны 632.8 нм [8].

На рис. 4 представлена зависимость температурного коэффициента показателя преломления кристалла KGd(WO₄)₂ от длины волны для различных поляризаций излучения. Во всем исследованном спектральном диапазоне 0.4-1.06 мкм величины dn/dT отрицательны и убы-

вают при увеличении длины волны. Данная закономерность наблюдалась для кристаллов KGd(WO₄)₂ (длины волн 435.8 нм и 632.8 нм) и изоструктурного ему KY(WO₄)₂ (четыре длины волны в спектральном диапазоне 435.8–632.8 нм) в измерениях dn/dT при помощи метода минимальных отклонений [4, 5].

Таблица 2

Значения термического коэффициента оптического пути *dn/dT*+(*n*-1)*a*_T [10⁻⁶ K⁻¹] и температурного коэффициента показателя преломления *dn/dT* [10⁻⁶ K⁻¹] в кристалле KGd(WO₄)₂ для различных длин волн, поляризаций и направлений распространения излучения

	dn/	dT+(n-	dn/dT						
	$E N_p $	$\boldsymbol{E} N_{\mathrm{m}}$	$E N_{g} $	$E \parallel N_{p}$	$\boldsymbol{E} \ N_{\mathrm{m}}$	$E \parallel N_{g}$			
405 нм									
$\boldsymbol{k} N_{\mathrm{p}}$	—	-3.7	-8.5		-6.4	-11.3			
$\boldsymbol{k} \ N_{\mathrm{m}}$	+1.4	_	+0.6	-10.5		-12.4			
$\boldsymbol{k} \ N_{\mathrm{g}}$	+7.2	+12.1	—	-11.2	-7.0				
532 нм									
$\boldsymbol{k} N_{\mathrm{p}}$	—	-5.8	-12.1		-8.4	-14.8			
$\boldsymbol{k} \ N_{\mathrm{m}}$	-2.3	_	-3.1	-13.6	—	-15.4			
$\boldsymbol{k} \ N_{\mathrm{g}}$	+3.3	+8.1	_	-14.2	-10.0	_			
632,8 нм									
$\boldsymbol{k} N_{\mathrm{p}}$	—	-8.5	-13.4		-11.0	-16.1			
$\boldsymbol{k} \ N_{\mathrm{m}}$	-3.5	_	-4.6	-14.6	_	-16.7			
$\pmb{k} \ N_{\mathrm{g}}$	+1.8	+7.2	_	-15.3	-10.5	_			
1064 нм									
$\boldsymbol{k} \ N_{\mathrm{p}}$	_	-8.8	-14.2	_	-11.2	-16.7			
$\boldsymbol{k} N_{\mathrm{m}}$	-4.9	_	-5.9	-15.7	-	-17.6			
$\pmb{k} \ N_{\mathrm{g}}$	+0.3	+4.2	_	-16.7	-12.9	-			

Рисунок 3 – Ориентация вектора нормали $n = (n_1, n_2, n_3)$ в системе координат, связанной с главными осями тензора коэффициентов термического расширения X_i' (*i* = 1..3): n^* – проекция вектора n на плоскость (X₁'–X₃'), ψ – угол между вектором n^* и осью X₁', φ – угол между вектором n и осью X₂'

Рисунок 4 – Зависимость температурного коэффициента показателя преломления в кристалле KGd(WO₄)₂ от длины волны для света, поляризованного в направлении осей оптической индикатрисы $N_{\rm p}, N_{\rm m}$ и $N_{\rm g}$: точки – экспериментальные данные, линии – результат моделирования экспериментальных данных при помощи выражения (10)

Для направлений осей оптической индикатрисы $N_{\rm m}$ и $N_{\rm g}$, которые лежат в плоскости (X₁'–X₃'), вектор $n^* = (\cos \psi, 0, \sin \psi)$, а α_{n^*} равен:

$$\alpha_{n^*} = \alpha_{11}' \cos^2 \psi + \alpha_{33}' \sin^2 \psi. \tag{9}$$

Зависимость температурного коэффициента показателя преломления от длины волны была промоделирована на основе теории, учитывающей два основных фактора, влияющих на изменение показателя преломления диэлектрического кристалла при изменении температуры: увеличение объема материала под действием эффекта термического расширения (и, следовательно, уменьшения его плотности и показателя преломления); а также уменьшение ширины электронной запрещенной зоны материала при увеличении температуры (которое приводит к увеличению показателя преломления) [12]. Выражение для температурного коэффициента показателя преломления имеет вид

$$dn/dT = -\alpha_{vol} \frac{(n_{\infty}^2 - 1)}{2n} \frac{\lambda^2}{\lambda^2 - \lambda_g^2} - \frac{1}{E_g} \frac{dE_g}{dT} \frac{(n_{\infty}^2 - 1)}{2n} \left(\frac{\lambda^2}{\lambda^2 - \lambda_g^2}\right)^2.$$
(10)

Здесь аvol - коэффициент объемного термического расширения ($\alpha_{vol} = \alpha_{11}' + \alpha_{22}' + \alpha_{33}'$), E_g – ширина электронной запрещенной зоны, λ_{g} [мкм] = 1.2398/ E_{g} [эВ] – соответствующая ей длина волны межзонных переходов, dE_g/dT – изменение ширины электронной запрещенной зоны с температурой, n_{∞} – показатель преломления материала в пределе $\lambda \rightarrow \infty$). Экспериментальные данные о значениях температурного коэффициента показателя преломления моделировались при помощи выражения (10), в качестве варьируемых параметров выступали Е_g и dE_{g}/dT (кривые на рисунок 4). Наилучшее согласие между экспериментальными и расчетными данными наблюдается для величин E_g, лежащих в диапазоне 4.6–5.6 3B и dE_g/dT , лежащих в диапазоне 0.7-1.2×10⁻⁴ эВК⁻¹ (в зависимости от поляризации света).

Заключение

Создана экспериментальная установка для определения температурного коэффициента показателя преломления dn/dT методом отклонения лазерного пучка в среде с линейным градиентом температуры. Описана процедура измерений величин *dn/dT* для анизотропных (оптически одноосных и двухосных) и изотропных сред. Проанализировано влияние эффекта термического расширения образца в различных направлениях измеряемые величины. на Ошибка измерения величины термического коэффициента оптического пути $dn/dT+(n-1)\alpha_T$ составила ~ 3×10⁻⁷ K⁻¹, а ошибка определения величин *dn/dT* с учетом погрешности определения показателя преломления и коэффициента линейного термического расширения составляет ~ $1 \times 10^{-6} \text{ K}^{-1}$.

Измерены величины dn/dT для оптически двухосного кристалла калий- гадолиниевого вольфрамата KGd(WO₄)₂ в спектральном диапазоне 0.4–1.06 мкм для излучения, поляризованного в направлении осей оптической индикатрисы N_p , N_m и N_g . Во всем исследованном спектральном диапазоне значения температурного коэффициента показателя преломления отрицательны и убывают при увеличении длины волны. На длине волны излучения 1.06 мкм (близкой к длинам волн лазерной генерации кристалла KGd(WO₄)₂ при активации ионами неодима Nd³⁺ и иттербия Yb³⁺) они составляют $dn_p/dT = -16.2 \times 10^{-6}$ K⁻¹, $dn_m/dT = -12.1 \times 10^{-6}$ K⁻¹ и $dn_g/dT = -17.2 \times 10^{-6}$ K⁻¹.

Список цитируемых источников

- Chenais, S. On thermal effects in solid-state lasers: The case of ytterbium-doped materials / S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges // Progress in Quant. Electr. - 2006. -№ 30. - P. 89-153.
- Hodgson, N. Optical resonators: fundamentals, advanced concepts and applications / N. Hodgson, H. Weber // Springer. – 1997. – Chap. 12.
- Koechner, W. Solid-State Laser Engineering, 6th ed. / W. Koechner // Springer. – 2006. – Chap. 7.
- Filippov, V. V. Thermo-optical parameters and dispersion of pure and Yb³⁺-doped KY(WO₄)₂ laser crystals / V. V. Filippov, I.T. Bodnar // Appl. Opt. – 2007. – № 46. – P. 6843–6846.
- Filippov, V. V. Negative thermo-optical coefficients and athermal directions in monoclinic KGd(WO₄)₂ and KY(WO₄)₂ laser host crystals in the visible region / V. V. Filippov, N. V. Kuleshov, I. T. Bodnar // Appl. Phys. B. 2007. № 87. P. 611–614.
- Vatnik, S. Thermo-optic coefficients of monoclinic KLu(WO₄)₂ / S. Vatnik & others // Appl. Phys. B. – 2009. – № 95. – P. 653–656.

- Mochalov, I. V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO₄)₂:Nd³⁺-(KGW:Nd) / I. V. Mochalov / Opt. Eng. – 1997. – № 36. – P. 1660–1669.
- Biswal, S. Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate / S. Biswal, S.P. O'Connor, S.R. Bowman // Appl. Opt. – № 44. – P. 3093–3097.
- Timoshenko, S. P. Goodier, J. N. Theory of Elasticity, 3nd ed. (McGraw-Hill, New York, 1987), Chap. 13.
- Pujol, M. C. Linear thermal expansion tensor in KRe(WO₄)₂ (Re=Gd, Y, Er, Yb) monoclinic crystals / M. C. Pujol & others // Materials Science Forum. – 2001. – P. 378–381, 710–717.
- Pujol, M. C. Crystalline structure and optical spectroscopy of Er³⁺-doped KGd(WO₄)₂ single crystals / M. C. Pujol & others // Appl. Phys. B. – 1999. – № 68. – P. 187–197.
- 12. *Ghosh, G.* Handbook of thermo-optic coefficients of optical materials with applications (Academic Press, London, 1998), Chap. 3.

Loiko P. A., Yumashev K. V., Kuleshov N. V., Pavlyuk A. A.

Thermooptic coefficients measurements by a laser beam deviation method for the medium with linear thermal gradient

The experimental setup for thermooptic coefficients dn/dT measurements by a laser beam deviation method for the medium with linear thermal gradient was developed. By means of this approach, the dispersion of the dn/dT values in the optically biaxial potassium gadolinium tungstate crystal KGd(WO₄)₂ was investigated in the 0,4–1,06 μ m spectral range for light polarized along the principal directions in the crystal.

Поступила в редакцию 10.11.2010.